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Abstract

We forecast quarterly US in�ation based on the generalized Phillips curve using

econometric methods which incorporate dynamic model averaging. These methods

not only allow for coe¢ cients to change over time, but also allow for the entire fore-

casting model to change over time. We �nd that dynamic model averaging leads to

substantial forecasting improvements over simple benchmark regressions and more

sophisticated approaches such as those using time varying coe¢ cient models. We

also provide evidence on which sets of predictors are relevant for forecasting in each

period.
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1 Introduction

Forecasting in�ation is one of the more important, but di¢ cult, exercises in macroeco-

nomics. Many di¤erent approaches have been suggested. Perhaps the most popular are

those based on extensions of the Phillips curve. This literature is too voluminous to

survey here, but a few representative and in�uential papers include Ang, Bekaert and

Wei (2007), Atkeson and Ohanian (2001), Groen, Paap and Ravazzolo (2009), Stock and

Watson (1999) and Stock and Watson (2008). The details of these papers di¤er, but the

general framework involves a dependent variable such as in�ation (or the change in in-

�ation) and explanatory variables including lags of in�ation, the unemployment rate and

other predictors. Recursive, regression-based methods, have had some success. However,

three issues arise when using such methods.

First, the coe¢ cients on the predictors can change over time. For instance, it is

commonly thought that the slope of the Phillips curve has changed over time. If so, the

coe¢ cients on the predictors that determine this slope will be changing. More broadly,

there is a large literature in macroeconomics which documents structural breaks and other

sorts of parameter change in many time series variables (see, among many others, Stock

and Watson, 1996). Recursive methods are poorly designed to capture such parameter

change. It is better to build models designed to capture it.

Second, the number of potential predictors can be large. Groen, Paap and Ravazzolo

(2009) consider ten predictors. Researchers working with factor models such as Stock and

Watson (1999) typically have many more than this. The existence of so many predictors

can result in a huge number of models. If the set of models is de�ned by whether each of

m potential predictors is included or excluded, then the researcher has 2m models. This

raises substantive statistical problems for model selection strategies. In light of this, many

authors have turned to Bayesian methods, either to do Bayesian model averaging (BMA)

or to automate the model selection process. Examples in macroeconomics and �nance

include Avramov (2002), Cremers (2002) and Koop and Potter (2004). Computational

demands can become daunting when the research is facing 2m models.

Third, the model relevant for forecasting can potentially change over time. For in-

stance, the set of predictors for in�ation may have been di¤erent in the 1970s than now.

Or some variables may predict well in recessions but not in expansions. Furthermore,

papers such as Stock and Watson (2008) �nd that Phillips curve forecasts work well in

some periods, but at other periods simpler univariate forecasting strategies work better.

In a application, Pesaran and Timmermann (2005) document how regressors useful for

explaining stock returns change over time. Such arguments suggest that the forecasting
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model is changing over time. This kind of issue further complicates an already di¢ cult

econometric exercise. That is, if the researcher has 2m models and, at each point in time,

a di¤erent forecasting model may apply, then the number of combinations of models which

must be estimated in order to forecast at time � is 2m� . Even in relatively simple fore-

casting exercises, it can be computationally infeasible to forecast by simply going through

all of these 2m� combinations. For this reason, to our knowledge, there is no literature

on forecasting in�ation with many predictors where the coe¢ cients on those predictors

may change over time and where a di¤erent forecasting model might hold at each point

in time. A purpose of this paper is to �ll this gap.

In this paper, we consider a strategy developed by Raftery, Karny and Ettler (2010)

which they refer to as dynamic model averaging or DMA. Their approach can also be used

for dynamic model selection (DMS) where a single (potentially di¤erent) model can be

used as the forecasting model at each point in time. DMA or DMS seem ideally suited for

the problem of forecasting in�ation since they allow for the forecasting model to change

over time while, at the same time, allowing for coe¢ cients in each model to evolve over

time. They involve only standard econometric methods for state space models such as

the Kalman �lter but (via some empirically-sensible approximations) achieve vast gains

in computational e¢ ciency so as to allow DMA and DMS to be done in real time despite

the computational problem described in the preceding paragraph.

We use these methods in the context of a forecasting exercise with quarterly US data

from 1960Q1 through 2008Q4. We use two measures of in�ation and fourteen predictors

and compare the forecasting performance of DMA and DMS to a wide variety of alterna-

tive forecasting procedures. DMA and DMS indicate that the set of good predictors for

in�ation changes substantially over time. Due to this, we �nd DMA and DMS to forecast

very well (in terms of forecasting metrics such as log predictive likelihoods, MSFEs and

MAFEs), in most cases leading to large improvements in forecast performance relative to

alternative approaches.

2 Forecasting In�ation

2.1 Generalized Phillips curve models

Many forecasting models of in�ation are based on the Phillips curve in which current

in�ation depends only on the unemployment rate and lags of in�ation and unemployment.

Authors such as Stock and Watson (1999) include additional predictors leading to the so-

called generalized Phillips curve. We take as a starting point, on which all models used
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in this paper build, the following generalized Phillips curve:

yt = �+ x
0
t�1� +

pX
j=1


jyt�j + "t (1)

where yt is in�ation which we de�ne as ln
�

Pt
Pt�1

�
, with Pt being a price index, and xt a

vector of predictors. This equation is relevant for forecasting at time t given information

through time t�1. When forecasting h > 1 periods ahead, the direct method of forecasting
can be used and yt and "t are replaced by yt+h�1 = ln

�
Pt
Pt�h

�
and "t+h�1 in (1).1

In this paper we use real time quarterly data. We provide results for in�ation as

measured by the GDP de�ator and Personal Consumption Expenditure (PCE) de�ator.

As predictors, authors such as Stock and Watson (1999) consider measures of real activity

including the unemployment rate. Various other predictors (e.g. cost variables, the growth

of the money supply, the slope of term structure, etc.) are suggested by economic theory.

Finally, authors such as Ang, Bekaert and Wei (2007) have found surveys of experts

on their in�ation expectations to be useful predictors. These considerations suggest the

following list of potential predictors which we use in this paper. Precise de�nitions and

sources are given in the Data Appendix.

� UNEMP: unemployment rate.

� CONS: the percentage change in real personal consumption expenditures.

� INV: the percentage change in private residential �xed investment.

� GDP: the percentage change in real GDP.

� HSTARTS: the log of housing starts (total new privately owned housing units).

� EMPLOY: the percentage change in employment (All Employees: Total Private
Industries, seasonally adjusted).

� PMI: the change in the Institute of Supply Management (Manufacturing): Purchas-
ing Manager�s Composite Index.

� TBILL: three month Treasury bill (secondary market) rate.
1Our justi�cation for using direct rather than iterated forecasts for h > 1 is largely practical. Iterated

forecasting would require predictive simulation which, in the context of a model space of the magnitude
we consider here, is computationally infeasible. With direct forecasts the errors could have an MA(h-1)
structure. In practice, we assume uncorrelated errors (and include a time-varying intercept in our state
equation which allows for an MA(1) component), but include lags of the dependent variable so as to make
this assumption empirically reasonable.
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� SPREAD: the spread between the 10 year and 3 month Treasury bill rates.

� DJIA: the percentage change in the Dow Jones Industrial Average.

� MONEY: the percentage change in the money supply (M1).

� INFEXP: University of Michigan measure of in�ation expectations.

� COMPRICE: the change in the commodities price index (NAPM commodities price

index).

� VENDOR: the change in the NAPM vendor deliveries index.

This set of variables is a wide one re�ecting the major theoretical explanations of

in�ation as well as variables which have found to be useful in forecasting in�ation in other

studies.

2.2 Time Varying Parameter Models

Research in empirical macroeconomics often uses time varying parameter (TVP) models

which are estimated using state space methods such as the Kalman �lter. A standard

speci�cation can be written, for t = 1; ::; T , as

yt = zt�t + "t (2a)

�t = �t�1 + �t: (2b)

In our case, yt is in�ation, zt = [1;xt�1; yt�1; : : : ; yt�p] is a 1 �m vector of predictors for

in�ation (including an intercept and lags of in�ation), �t =
�
�t�1; �t�1; 
t�1; : : : ; 
t�p

�
is

an m� 1 vector of coe¢ cients (states), "t
ind� N (0; Ht) and �t

ind� N (0; Qt). The errors, "t
and �t, are assumed to be mutually independent at all leads and lags. Examples of recent

papers which use such models (or extensions thereof) in macroeconomics include Cogley

and Sargent (2005), Cogley, Morozov and Sargent (2005), Groen, Paap and Ravazzolo

(2009), Koop, Leon-Gonzalez and Strachan (2009), Korobilis (2009) and Primiceri (2005).

The model given by (2a) and (2b) is an attractive one that allows for empirical insights

which are not available with traditional, constant coe¢ cient models (even when the latter

are estimated recursively). However, when forecasting, they have the potential drawback

that the same set of explanatory variables is assumed to be relevant at all points in time.

Furthermore, if the number of explanatory variables in zt is large, such models can often

over-�t in-sample and, thus, forecast poorly.
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Popular extensions of (2a) and (2b) such as TVP-VARs also include the same set

of explanatory variables at all times and su¤er from the same problems. Innovative

extensions such as that of Groen, Paap and Ravazollo (2009) involve a treatment of

predictor uncertainty, but not as general a treatment as is allowed for our approach.

In an in�ation forecasting exercise, they use a model which modi�es the measurement

equation to be:

yt =

mX
j=1

sj�jtzjt + "t;

where �jt and zjt denote the jth elements of �t and zt. The key addition to their model

is sj 2 f0; 1g. Details of the exact model used for sj are provided in Groen, Paap and
Ravazollo (2009). For present purposes, the important thing to note is that it allows for

each predictor for in�ation to either be included (if sj = 1) or excluded (if sj = 0), but

that sj does not vary over time. That is, this model either includes a predictor at all points

in time or excludes it at all points in time. It does not allow for the set of predictors to

vary over time. It is the treatment of this latter issue which is the key addition provided

by DMA.

Another recent related contribution is Hoogerheide, Kleijn, Ravazzolo, van Dijk and

Verbeek (2009). This paper adopts a model of the form

yt =
KX
j=1

sjtyjt + "t;

where their yjt are forecasts arising from di¤erent models and sjt are time-varying weights

associated with each forecast. The adoption of time-varying weights makes this model

attractive and it shares this feature with our approach. However, it di¤ers from our

approach in several ways, the most important of which is that it allows the time-varying

weights to evolve according to a random walk. This approach may not work well when

there is a rapid switch between one forecasting model to another. Furthermore, when

m is huge (as in our forecasting exercise) estimating all the parameters associated with

the random walk evolution of the weights using MCMC methods will be computationally

daunting or infeasible. As we shall see, DMA manages to surmount these computational

di¢ culties.
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2.3 Dynamic Model Averaging

To de�ne what we do in this paper, suppose that we have a set of K models which are

characterized by having di¤erent subsets of zt as predictors. Denoting these by z(k) for

k = 1; ::; K, our set of models can be written as:

yt = z
(k)
t �

(k)
t + "

(k)
t (3)

�
(k)
t+1 = �

(k)
t + �

(k)
t ;

"
(k)
t is N

�
0; H

(k)
t

�
and �(k)t is N

�
0; Q

(k)
t

�
. Let Lt 2 f1; 2; ::; Kg denote which model

applies at each time period, �t =
�
�
(1)0
t ; ::; �

(K)0
t

�0
and yt = (y1; ::; yt)

0. The fact that we

are letting di¤erent models hold at each point in time and will do model averaging justi�es

the terminology �dynamic model averaging�. To be precise, when forecasting time t

variables using information through time t�1, DMA involves calculating Pr (Lt = kjyt�1)
for k = 1; ::; K and averaging forecasts across models using these probabilities. DMS

involves selecting the single model with the highest value for Pr (Lt = kjyt�1) and using
this to forecast.2 Details on the calculation of Pr (Lt = kjyt�1) will be provided below.
Speci�cations such as (3) are potentially of great interest in empirical macroeconomics

since they allow for the set of predictors for in�ation to change over time as well as allowing

the marginal e¤ects of the predictors to change over time. The problems with such a

framework are that many of the models can have a large number of parameters (and,

hence, risk being over-parameterized) and the computational burden which arises when

K is large implies that estimation can take a long time (a potentially serious drawback

when forecasting in real time).

To understand the source and nature of these problems, consider how the researcher

might complete the model given in (3). Some speci�cation for how predictors enter/leave

the model in real time is required. A simple way of doing this would be through a transi-

tion matrix, P , with elements pij = Pr (Lt = ijLt�1 = j) for i; j = 1; ::; K. Beginning with
Hamilton (1989) such Markov switching processes have been commonly-used in macro-

economics. Bayesian inference in such a model is theoretically straightforward, but will

be computationally infeasible since P will typically be an enormous matrix. Consider

the case where we have m potential predictors and our models are de�ned according to

whether each is included or excluded. Then we have K = 2m and P is a K �K matrix.
2Both DMA and DMS have strong statistical foundations. However, policymakers may dislike the fact

that DMS can result in the forecasting model constantly switching and �nd the gradual re-weighting
which will occur with DMA more appealing.
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Unless m is very small, P will have so many parameters that inference will be very impre-

cise and computation very slow.3 Thus, a full Bayesian approach to DMA can be quite

di¢ cult. In this paper, we use approximations suggested by Raftery, Karny and Ettler

(2010) in an industrial application. These approximations have the huge advantage that

standard state space methods (e.g. involving the Kalman �lter) can be used, allowing for

fast real time forecasting.

The framework given in (3) is related to the switching linear Gaussian state space

model described in Fruhwirth-Schnatter (2006, pages 393-394 and 406-410) who provides

several citations, mostly from the engineering literature, of papers which have used such

models. However, due to the need to run recursive algorithms such as the Kalman �lter

KT times, exact treatments in the literature are rare unless T and K are small (see,

e.g., Schervish and Tsay, 1988, for an empirical application of this sort). In most cases

approximations have been used. In econometrics, the approximate method proposed by

Kim (1994), which requires the Kalman �lter be run K2 times, has perhaps been the most

in�uential. Kim (1994) investigates both the computational speed and accuracy of his

approximation relative to exact methods. Great advantages in speed and only a small loss

of accuracy relative are found. However, this method proceeds conditionally on P which,

as we have seen, is of too high-dimension in the present case. Accordingly, we turn to

the approximations of Raftery et al (2010) which, although they do not explicitly specify

a transition matrix such as P , do have sensible properties, are computationally simple

and seem to work well in practice. In the context of switching linear Gaussian state space

models, it is worth noting that the structure of (3) implies that the entire state vector, �t,

breaks into blocks (with one block for each model) which are independent of one another

(i.e. the predictive density depends on �(k)t only conditionally on Lt = k). This property

is an important one in the derivations of Raftery et al (2010) which result in an accurate

approximation which only involves running the Kalman �lter K times.

The approximations used by Raftery et al (2010) involve two parameters, � and �,

which they refer to as forgetting factors and �x to numbers slightly below one. To explain

the role of these forgetting factors, �rst consider the standard state space model in (2a) and

(2b) and ignore the role of model uncertainty. For given values of Ht and Qt, standard

�ltering results can be used to carry out recursive estimation or forecasting. That is,

Kalman �ltering begins with the result that

�t�1jyt�1 � N
�b�t�1;�t�1jt�1� (4)

3See, for instance, Chen and Liu (2000) who discuss related models and how computation time up to
t typically involves mixing over Kt terms.
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where formulae for b�t�1 and �t�1jt�1 are standard (and are provided below for the case
considered in this paper). Note here only that these formulae depend on Ht and Qt. Then

Kalman �ltering proceeds using:

�tjyt�1 � N
�b�t�1;�tjt�1� ; (5)

where

�tjt�1 = �t�1jt�1 +Qt:

Raftery et al (2010) note that things simplify substantially if this latter equation is re-

placed by:

�tjt�1 =
1

�
�t�1jt�1 (6)

or, equivalently, Qt =
�
1� ��1

�
�t�1jt�1 where 0 < � � 1. Such approaches have long

been used in the state space literature going back to Fagin (1964) and Jazwinsky (1970).

In econometrics the forgetting factor approach allowed the implementation of time-varying

parameter VARs using the limited computing power available in the 1980s; see Doan,

Litterman, and Sims (1984). The name �forgetting factor�is suggested by the fact that

this speci�cation implies that observations j periods in the past have weight �j. An

alternative way of interpreting � is to note that it implies an e¤ective window size of
1
1�� . It is common to choose a value of � near one, suggesting a gradual evolution

of coe¢ cients. Raftery et al (2010) set � = 0:99. For quarterly macroeconomic data,

this suggests observations �ve years ago receive approximately 80% as much weight as

last period�s observation. This is the sort of value consistent with fairly stable models

where coe¢ cient change is gradual. With � = 0:95, observations �ve years ago receive

only about 35% as much weight as last period�s observations. This suggests substantial

parameter instability where coe¢ cient change is quite rapid. This seems to exhaust the

range of reasonable values for � and, accordingly, in our empirical work we consider

� 2 (0:95; 0:99). � = 0:99 will be our benchmark choice and most of our empirical results
will be reported for this (although we also include an analysis of the sensitivity to this

choice).

An important point to note is that, with this simpli�cation, we no longer have to

estimate or simulate Qt. Instead, all that is required (in addition to the Kalman �lter) is

a method for estimating or simulating Ht (something which we will discuss below).

Estimation in the one model case is then completed by the updating equation:
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�tjyt � N
�b�t;�tjt� ; (7)

where

b�t = b�t�1 + �tjt�1zt �Ht + zt�tjt�1z0t��1 �yt � ztb�t�1� (8)

and

�tjt = �tjt�1 � �tjt�1zt
�
Ht + zt�tjt�1z

0
t

��1
zt�tjt�1: (9)

Recursive forecasting is done using the predictive distribution

ytjyt�1 � N
�
ztb�t�1; Ht + zt�tjt�1z0t� : (10)

We stress that, conditional on Ht, these results are all analytical and, thus, no Markov

chain Monte Carlo (MCMC) algorithm is required. This greatly reduces the computa-

tional burden.

The case with many models, (3), uses the previous approximation and an additional

one. To explain this, we now switch to the notation for the multiple model case in (3)

and let �t denote the vector of all the coe¢ cients. In the standard single model case,

Kalman �ltering is based on (4), (5) and (7). In the multi-model case, for model k, these

three equations become:

�t�1jLt�1 = k; yt�1 � N
�b�(k)t�1;�(k)t�1jt�1� ; (11)

�tjLt = k; yt�1 � N
�b�(k)t�1;�(k)tjt�1� (12)

and

�tjLt = k; yt � N
�b�(k)t ;�(k)tjt � ; (13)

where b�(k)t ;�(k)tjt and �(k)tjt�1 are obtained via Kalman �ltering in the usual way using (8),
(9) and (6),except with (k) superscripts added to denote model k. To make clear the

notation in these equations, note that, conditional on Lt = k, the prediction and updating

equations will only provide information on �(k)t and not the full vector �t. Hence, we have

only written (11), (12) and (13) in terms of the distributions which hold for �(k)t .

The previous results were all conditional on Lt = k, and we need a method for uncon-

ditional prediction (i.e. not conditional on a particular model). In theory, a nice way of
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doing this would be through specifying a transition matrix, P , such as that given above

and using MCMC methods to obtain such unconditional results. However, for the rea-

sons discussed previously, this will typically be computationally infeasible and empirically

undesirable due to the resulting proliferation of parameters. In this paper, we follow the

suggestion of Raftery et al (2010) involving a forgetting factor for the state equation for

the models, �, comparable to the forgetting factor � used with the state equation for

the parameters. The derivation of Kalman �ltering ideas begins with (4). The analogous

result, when doing DMA, is

p
�
�t�1jyt�1

�
=

KX
k=1

p
�
�
(k)
t�1jLt�1 = k; yt�1

�
Pr
�
Lt�1 = kjyt�1

�
; (14)

where p
�
�
(k)
t�1jLt�1 = k; yt�1

�
is given by (11). To simplify notation, let �tjs;l = Pr (Lt = ljys)

and thus, the �nal term on the right hand side of (14) is �t�1jt�1;k.

If we were to use the unrestricted matrix of transition probabilities in P with elements

pkl then the model prediction equation would be:

�tjt�1;k =
KX
l=1

�t�1jt�1;lpkl;

but Raftery et al (2010) replace this by:

�tjt�1;k =
��t�1jt�1;kPK
l=1 �

�
t�1jt�1;l

; (15)

where 0 < � � 1 is set to a �xed value slightly less than one and is interpreted in a similar
manner to �. Raftery et al (2010) argue that this is an empirically sensible simpli�cation

and, in particular, is a type of multiparameter power steady model used elsewhere in the

literature. See also Smith and Miller (1986) who work with a similar model and argue

approximations such as (15) are sensible and not too restrictive.

The huge advantage of using the forgetting factor � in the model prediction equation

is that we do not require an MCMC algorithm to draw transitions between models nor a

simulation algorithm over model space.4 Instead, simple evaluations comparable to those

of the updating equation in the Kalman �lter can be done. In particular, we have a model

updating equation of:

4Examples of simulation algorithms over model space include the Markov chain Monte Carlo model
composition (MC3) algorithm of Madigan and York (1995) or the reversible jump MCMC algorithm of
Green (1995).
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�tjt;k =
�tjt�1;kpk (ytjyt�1)PK
l=1 �tjt�1;lpl (ytjyt�1)

; (16)

where pl (ytjyt�1) is the predictive density for model l (i.e. the Normal density in (10)
with (l) superscripts added) evaluated at yt.

Recursive forecasting can be done by averaging over predictive results for every model

using �tjt�1;k. Therefore, DMA point predictions are given by:

E
�
ytjyt�1

�
=

KX
k=1

�tjt�1;kz
(k)
t
b�(k)t�1:

DMS proceeds by selecting the single model with the highest value for �tjt�1;k at each

point in time and simply using it for forecasting.

To understand further how the forgetting factor � can be interpreted, note that this

speci�cation implies that the weight used in DMA which is attached to model k at time

t is:

�tjt�1;k /
�
�t�1jt�2;kpk

�
yt�1jyt�2

���
=

t�1Y
i=1

�
pk
�
yt�ijyt�i�1

���i
:

Thus, model k will receive more weight at time t if it has forecast well in the recent past

(where forecast performance is measured by the predictive density, pk (yt�ijyt�i�1)). The
interpretation of �recent past� is controlled by the forgetting factor, � and we have the

same exponential decay at the rate �i for observations i periods ago as we had associated

with �. Thus, if � = 0:99 (our benchmark value and also the value used by Raftery et al,

2010), forecast performance �ve years ago receives 80% as much weight as forecast per-

formance last period (when using quarterly data). If � = 0:95, then forecast performance

�ve years ago receives only about 35% as much weight. These considerations suggest that,

as with �, we focus on the interval � 2 (0:95; 0:99).
Note also that, if � = 1, then �tjt�1;k is simply proportional to the marginal likelihood

using data through time t� 1. This is what standard approaches to BMA would use. If
we further set � = 1, then we obtain BMA using conventional linear forecasting models

with no time variation in coe¢ cients. In our empirical work, we include BMA in our set

of alternative forecasting procedures and implement this by setting � = � = 1.

We stress that, conditional on Ht, the estimation and forecasting strategy outlined
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above only involves evaluating formulae such as those in the Kalman �lter. All the

recursions above are started by choosing a prior for �0j0;k and �
(k)
0 for k = 1; ::; K.

The preceding discussion is all conditional on Ht. Raftery et al (2010) recommend

a simple plug in method where H(k)
t = H(k) and is replaced with a consistent estimate.

When forecasting in�ation, however, it is likely that the error variance is changing over

time. In theory, we could use a stochastic volatility or ARCH speci�cation for H(k)
t .

However, to do this would greatly add to the computational burden. Thus, we use an

Exponentially Weighted Moving Average (EWMA) estimate of H(k)
t :

bH(k)
t =

vuut(1� �) tX
j=1

�j�1
�
yj � z(k)j b�(k)j �2: (17)

EWMA estimators are commonly used to model time-varying volatilities in �nance; see

Riskmetrics (1996) for the properties of EWMA estimators. � is called a decay factor,

and Riskmetrics proposes setting 0.97 for monthly data and 0.94 for daily data. We have

quarterly data, so we expect to have a slower decay of volatility so we set � = 0:98.

An attractive feature of the EWMA speci�cation is that it can be approximated by a

recursive form, which can be used to obtain volatility forecasts. The period t+1 forecast

given data up to time t takes the form.

bH(k)
t+1jt = �

bH(k)
tjt�1 + (1� �)

�
yt � z(k)t b�(k)t �2 :

The interested reader is referred to an appendix which further investigates the properties

of the EWMA speci�cation.

3 Empirical Work

In order to evaluate DMA and DMS we use two measures of in�ation: one based on the

GDP de�ator and the other on the PCE de�ator. Our dataset is completed with the 14

potential predictors described in Section 2 and the Data Appendix. Our forecasting is

done in real time in the sense that, for all our variables, we use the value which would

have been available to the forecaster at the time the forecast was being made. The full

sample runs from 1960:Q1 to 2008:Q4.

To be clear on our timing convention, note that for any variable (say, Xt) we will have

the observed value of it at di¤erent vintages. Let Xv
t be the value of Xt as known at time
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v. We will refer to XT
t as �nal vintage data and X

t+1
t as the initial release.5 For variables

which are subject to revision, forecasts made of in�ation at time � + h given information

through time � will use data of vintage � (i.e. the dependent variable will have dating

conventionX�
t for t = 1; ::; � whereas the explanatory variables will be datedX

�
t�h). Since,

for some of the variables, real time versions are only available beginning in 1969Q4, we

start the forecast evaluation period after this.6 Since the initial release of time t data is

made in time t+1, we start our h-step ahead forecasts in 1969Q4+h+1. When evaluating

forecast performance in a real time forecasting exercise, the researcher must choose which

realization of the data to use. We use �nal vintage data for this purpose as being most

likely to re�ect the true value of in�ation. Remember also that, when forecasting at

horizon h, our de�nition of in�ation is ln
�

Pt
Pt�h

�
where Pt is the appropriate price index.

We consider forecast horizons of h = 1; 4 and 8:

Our empirical work is divided into two sub-sections. The �rst of these sub-sections

present results using DMA and DMS, implemented in our preferred way. This involves

setting � = 0:99, � = 0:99, a noninformative prior over the models (i.e. �0j0;k = 1
K
for k =

1; ::; K so that, initially, all models are equally likely) and a very di¤use prior on the initial

conditions of the states: �(k)0 � N (0; 100Ink), where nk is the number of variables in model
k, for k = 1; ::; K. The �rst sub-section presents evidence on which variables are good for

predicting in�ation over time. The second sub-section investigates forecast performance by

comparing DMA forecasts to those produced by several alternative forecasting strategies.

We also present evidence on the sensitivity of our results to the choice of the forgetting

factors. All of our models include an intercept two lags of the dependent variable.7

3.1 Which Variables are Good Predictors for In�ation?

In theory, DMA has a large potential bene�t over other forecasting approaches in that it

allows the forecasting model to change over time. It has a second bene�t in that many

of the models under consideration are parsimonious and, if DMA attached a great deal

of weight to such models, it can avoid over-�tting problems. Of course, in a particular

empirical application, these bene�ts may or may not be achieved. Accordingly, we begin

by presenting evidence that, when forecasting in�ation, DMA is favoring parsimonious

models and that the forecasting model is changing over time.

One striking feature of all of our empirical results is that, although we have 14 potential

5Several of our variables are not subject to revisions and, hence, we just use �nal vintage data for
them (see the appendix for anlist of which variables are subject to revisions and which are not).

6Prior to 1969Q4, if real time data is not available we use the �nal vintage data.
7Preliminary experimentation with lag lengths up to four indicated two lags leads to the best forecast

performance for both our measures of in�ation.
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predictors (and, thus, tens of thousands of models), most probability is attached to very

parsimonious models with only a few predictors. If we let Sizek;t be the number of

predictors in model k at time t (not including the intercept and AR lags which are

common to all models) then

E (Sizet) =
KX
k=1

�tjt�1;kSizek;t

can be interpreted as the expected or average number of predictors used in DMA at time

t. Figure 1 plots this for our six empirical exercises (i.e. two de�nitions of in�ation and

three forecast horizons).

For the short forecast horizon (h = 1), the shrinkage of DMA is particularly striking.

Virtually everywhere it includes (in an expected value sense) between zero and three of

the 14 predictors listed in Section 2 for both our de�nitions of in�ation. At the longer

horizons of h = 4 and h = 8, slightly more predictors are included, but almost never are

more than 4 predictors included, showing that DMA is strongly favoring parsimonious

models.

Figure 1 shows clear evidence that DMA will shrink forecasts and provides some

evidence that the way this shrinkage is done changes over time. But it does not tell us

which predictors are important and how the predictors are changing over time. It is to

these issues we now turn.
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Figure 1: Expected Number of Predictors in Each Forecasting Exercise.

Figures 2 through 7 shed light on which predictors are important at each point in

time for each of our six empirical exercises. These graphs contain posterior inclusion

probabilities. That is, they are the probability that a predictor is useful for forecasting

at time t. Equivalently, they are the weight used by DMA attached to models which

include a particular predictor. To keep the �gures readable, we only present posterior

inclusion probabilities for predictors which are important at least one point in time. To

be precise, any predictor where the inclusion probability is never above 0.5 is excluded

from the appropriate �gure.

These �gures con�rm that DMS is almost always choosing parsimonious models and

the weights in DMA heavily re�ect parsimonious models. That is, it is rare for DMS to

choose a model with more than two or three predictors.

Another important result is that for both measures of in�ation and for all forecast

horizons, we are �nding strong evidence of model change. That is, the set of predictors

in the forecasting model is changing over time. Furthermore, DMA can be seen to allow

for both gradual or abrupt changes in the role of a predictor. That is, there are many

cases where the posterior inclusion probability associated with a predictor increases or

decreased gradually over time (see, e.g., the gradual change in the inclusion probability

of UNEMP in Figure 3). But there are also several abrupt changes where a posterior
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inclusion probability changes abruptly from near zero to near one (or vice versa) within

a quarter or two (see, e.g., INFEXP in Figure 3 or TBILL in Figures 2 and 3). A TVP

regression model of the form given in (2a) and (2b) using all the predictors would not

allow the role of individual predictors to switch so rapidly.

The interested reader can examine Figures 2 through 7 for any particular variable of

interest. Here we note only a few main �ndings. Note �rst that half of our potential

explanatory variables come through as being important at some time, for some forecast

horizon for some measure of in�ation. These variables are: INFEXP, TBILL, HSTARTS,

UNEMP, MONEY, SPREAD and EMPLOY with the �rst three of these variables being

usually of particular importance. But it is clearly the case that there is a large variation

over time, over forecast horizons and over measures of in�ation in relation to what is a

good predictor for in�ation.

Results for both in�ation measures for h = 1 are particularly striking. In both cases,

DMA puts most weight on the same predictors and these show similar patterns. For

instance, the INFEXP variable is a poor predictor early in the sample, but becomes the

dominant predictor after the mid-1980s. A story consistent with this pattern is that

surveys of in�ation expectations became more reliable after the Great Moderation of the

business cycle when in�ation became less volatile. Another �nding is that TBILL is a

good predictor in the 1970s, but DMA abruptly drops the predictor around 1980. These

patterns are also found when h = 4, but do not come through so clearly when h = 8.

Unemployment, a variable conventionally used in the Phillips�curve, is not found to

be an important predictor when h = 1, but is of some importance at longer horizons

(particularly early in the sample). The housing starts variable is found to be a much

more important predictor at medium and long horizons than when h = 1. We hesitate to

provide too many economic stories from a reduced-form forecasting exercise such as ours.

But Figures 2 through 7 illustrate an important bene�t of DMA and DMS: that they will

pick up good predictors automatically as the forecasting model evolves over time.
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Figure 2: Posterior Probability of Inclusion of Predictors (GDP def. in�ation, h = 1)
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Figure 3: Posterior Probability of Inclusion of Predictors (GDP def. in�ation, h = 4)

18



1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1

1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1

TBILL
SPREAD

UNEMP
HSTARTS
EMPLOY

Figure 4: Posterior Probability of Inclusion of Predictors (GDP def. in�ation, h = 8)
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Figure 5: Posterior Probability of Inclusion of Predictors (PCE def. in�ation, h = 1)

19



1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1

1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.2

0.4

0.6

0.8

1

INEXP
MONEY
HSTARTS

UNEMP
TBILL
SPREAD

Figure 6: Posterior Probability of Inclusion of Predictors (PCE def. in�ation, h = 4)
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Figure 7: Posterior Probability of Inclusion of Predictors (PCE def. in�ation, h = 8)
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In�ation persistence is another issue which has received great attention in the empirical

macroeconomic literature. This is commonly measured as the sum of the AR coe¢ cients.

Figure 8 presents some evidence on this issue. It compares our benchmark implementation

of DMA to recursive OLS (using an AR(2) model) as well as a TVP version of an AR(2)

model (exact details of estimation of this model are given in the next sub-section of

this paper). As expected, recursive OLS indicates a high and roughly constant degree

of in�ation persistence. The TVP-AR model also indicates a high degree of in�ation

persistence, but there is a substantial decline after the late 1990s. In�ation persistence

using DMA is substantially lower. This is as expected since with DMAwe are conditioning

on a larger information set. That is, the predictors are explaining a large amount of the

variability in in�ation, leaving less of a role for the AR terms.
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Figure 8: In�ation persistence: DMA, Recursive AR(2), and TVP-AR(2) models

3.2 Forecast Performance

3.2.1 DMA versus Other Forecast Procedures

There are many metrics for evaluating forecast performance and many alternative fore-

casting methodologies that we could compare our DMA and DMS forecasts to. In this

paper, we present two forecast comparison metrics involving point forecasts. These are
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mean squared forecast error (MSFE) and mean absolute forecast error (MAFE). We also

present a forecast metric which involves the entire predictive distribution: the sum of log

predictive likelihoods. Predictive likelihoods are motivated and described in many places

such as Geweke and Amisano (2010). The predictive likelihood is the predictive density

for yt (given data through time t � 1) evaluated at the actual outcome (we remind the
reader that we are using the �nal vintage data for the actual outcome). The formula for

the one-step ahead predictive density in model l was denoted by pl (ytjyt�1) above and can
be calculated as described in Section 2.3. We use the direct method of forecasting and,

hence, the log predictive density for the h-step ahead forecast is the h-period extension of

this. We use the sum of log predictive likelihoods for forecast evaluation, where the sum

begins in 1970Q1. MSFEs and MAFEs are also calculated beginning in 1970Q1.

In terms of forecasting methods, we present results for:

� Forecasts using DMA with � = � = 0:99.

� Forecasts using DMS with � = � = 0:99.

� Forecasts using DMA with � = � = 0:95.

� Forecasts using DMS with � = � = 0:95.

� Forecasts using DMA, but where the coe¢ cients do not vary over time in each model
(i.e. this is a special case of DMA where � = 1). We set � = 0:99.

� Forecasts using BMA as a special case of DMA (i.e. we set � = � = 1).

� Forecasts using a single model containing an intercept, two lags of in�ation, and
all the predictors, but with time varying parameters (i.e. this is a special case of

DMA or DMS where 100% of the prior weight is attached to the model with all the

predictors, but all other modelling choices are identical including � = 0:99). This is

labelled TV P � AR(2)�X in the tables.

� Forecasts as for TVP model, but only including the intercept and two lags of in�a-
tion. This is labelled TVP-AR(2) in the tables.

� Forecasts done recursively using traditional g-prior BMA estimated with MCMC

with g = 1
T
.8

8We implement this exactly as in Fernandez, Ley and Steel (2001). This approach to BMA is the most
popular one in cross-sectional regressions, but has been used in time series applications in, e.g., Koop
and Potter (2004).
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� Forecasts using the unobserved components with stochastic volatility (UC-SV) model
of Stock and Watson (2007).9

� Recursive OLS forecasts using an AR(p) model with an intercept where p is selected
at each point in time using BIC. Maximum lag length is eight.

� Recursive OLS forecasts using an AR(2) model with an intercept and all of the
predictors.

� Rolling OLS forecasts using an AR(p) model with an intercept. We use a window
of 40 quarters.

� Rolling OLS forecasts using an AR(2) model with an intercept and all of the pre-
dictors. We use a window of 40 quarters.

� Random walk forecasts.

The �nal �ve methods are not Bayesian, so no predictive likelihoods are presented for

these cases.

Tables 1 and 2 present results for our forecasting exercise for our two di¤erent measures

of in�ation.

The overall story is a clear and strong one: DMA and DMS forecast well. In most

cases much better than other forecasting methods and in no case much worse than the

best alternative method. We elaborate on these points below.

Consider �rst the log predictive likelihoods (the preferred method of Bayesian forecast

comparison). These always indicate that DMA or DMS forecasts best, often much better

than the other forecasting strategies used in our comparison. Note, in particular, the

excellent forecast performance of DMS with � = � = 0:95 for both measures of in�ation

at all horizons. This value for the forgetting factors allows for rapid change in both

coe¢ cients and in models. Versions of DMA or DMS which impose more gradual model

change do slightly worse. Note, however, that conventional BMA forecasts poorly. The

TVP-AR(2) and UC-SV models also have substantially lower predictive likelihoods than

the DMA or DMS approaches. Of the non-DMA and non-DMS approaches, the UC-SV

approach of Stock and Watson (2007) consistently is the best performer. Another message

coming out of Tables 1 and 2 is that simply using a TVP model with all predictors tends

to forecast poorly. Of course, we are presenting results for only a single empirical exercise.

9The exact speci�cation is given in an appendix to this paper or on page 16 of Stock and Watson
(2007). We estimate the model exactly as they do. Following Stock and Watson (2007) we set the
coe¢ cient they call 
 to 0:2.
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But TVP models such as TVP-VARs are gaining increasing popularity in macroeconomics

and the poor forecast performance of TVP models found in Tables 1 and 2 should serve

as a caution to users of such models (at least in forecasting exercises). Clearly, we are

�nding that the shrinkage provided by DMA or DMS is of great value in forecasting.

In most cases, predictive likelihoods also indicate that DMS forecasts a bit better

than DMA (although this result does not carry over to MAFEs and MSFEs where in

some cases DMA does better). DMS and DMA can be interpreted as doing shrinkage

in di¤erent ways. DMS puts zero weight on all models other than the one best model,

thus �shrinking�the contribution of all models except a single one towards zero. It could

be that this additional shrinkage provides some additional forecast bene�ts over DMA.

Furthermore, in times of rapid change, DMS will tend to switch more quickly that DMA

since it can select an entirely new model as opposed to adjusting the weights on all the

models.

If we turn our attention to results using MSFE andMAFE, we can see that the previous

picture still broadly holds: DMS and DMA, particularly for the case where � = � = 0:95,

always forecast best (although DMA does somewhat better relative to DMS than we found

using predictive likelihoods). In addition, we can say that naive forecasting methods such

as using an AR(2) or random walk model are usually inferior to DMA and DMS for

both measures of in�ation at all forecast horizons. However, results are not as strong as

with predictive likelihoods and there are some di¤erences with the patterns noted above.

The reason results are not as strong is that the MSFEs and MAFEs are only using the

point forecasts, whereas predictive likelihoods are using the entire predictive distribution

(i.e. when working with the predictive, the tails of the density matter and having a few

realizations in the tails of the predictive density can have a big negative impact on forecast

performance).

When we look at MSFEs and MAFEs, it is rolling OLS forecasts using all the pre-

dictors which forecast best among all of the OLS-based methods. DMS and DMA with

� = � = 0:95 always lead to lower MSFEs and MAFEs than rolling OLS with all the

predictors. However, there are some cases (particularly at longer forecast horizons) where

rolling OLS with all the predictors leads to lower MSFEs and MAFEs than some other

implementations of DMA or DMS. This re�ects the fact that, in this data set, there are

times where rapid change is necessary to give good forecast performance. DMA and DMS

with � = � = 0:95 achieve this rapid change and forecast well. To a lesser extent, rolling

OLS can also achieve this by having a short window width. However, we do stress that

there are many cases where DMA or DMS does much better than rolling OLS and in all

cases the other OLS benchmarks do poorly.
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3.2.2 Comparison to Greenbook Forecasts

It is also of interest to compare the forecast performance of DMA to those provided in

the Greenbooks produced by the Federal Reserve Board of Governors. These are for GDP

de�ator in�ation and are published with a lag and we have only the forecasts made up to

2003Q4 (which provide us with h = 1 forecasts up to 2004Q1 and h = 4 up to 2004Q4).

One quarter ahead forecasts are available since 1970Q1, while one year ahead forecasts

were only made starting in 1974Q1. Two year ahead forecasts are available only for a

considerably shorter period of time with many missing observations, hence we will not

make comparisons for h = 8. Since the Greenbook forecasts are point forecasts, we cannot

present predictive likelihoods. Accordingly, in Table 3 we present MAFEs (MSFEs give

qualitatively similar results) for GDP de�ator in�ation for h = 1 and h = 4. For the case

of this comparison we use the simple random walk as a base model, which means that

the MAFEs of all models are relative to the MAFE of this base model. We present DMA

results for values of the forgetting factors (�; �): (0:99; 0:99) and (0:95; 0:95). Both DMA

models are doing excellent for the short term forecasts compared to the Greenbook. For

� = � = 0:99 DMA improves over Greenbook forecasts by 12% and for � = � = 0:95

the improvement is as high as 15%. However, for h = 4 the Greenbook forecasts are

10% better than those provided by DMA with � = � = 0:99. It is only the DMA with

� = � = 0:95 (i.e. allow faster switching of models and parameters) which gives a very

good performance for this forecast horizon, comparable with the Greenbook forecasts and

much better than the random walk.

Table 3. Comparison of DMA with Greenbook forecasts: MAFE

h = 1 h = 4

Greenbook forecasts 0.91 0.84

DMA � = � = 0:99 0.80 0.94

DMA � = � = 0:95 0.77 0.83

3.2.3 Sensitivity Analysis

Our previous DMA and DMS results were for � = � = 0:99 and � = � = 0:95: As

discussed previously, researchers in this �eld choose pre-selected values for � and � and

the interval (0:95; 0:99) is the sensible one for most empirical applications. It would be

possible to choose � and � in a data-based fashion, but this is typically not done for

computational reasons. For instance, the researcher could select a grid of values for these

two forgetting factors and then do DMA at every possible combination of values for �

and �. Some metric (e.g. an information criteria or the sum of log predictive likelihoods
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through time t� 1) could be used to select the preferred combination of � and � at each
point in time. However, this would turn an already computationally demanding exercise

to one which was g2 times as demanding (where g is the number of values in the grid).

Accordingly, researchers such as Raftery et al (2010) simply set � = � = 0:99 and argue

that results will be robust to reasonable changes in these factors. In order to investigate

such robustness claims, Tables 3 and 4 present results for our forecasting exercise using

di¤erent combinations of the forgetting factors.

Overall, Tables 3 and 4 reveal a high degree of robustness to choice of � and �.

If anything, these tables emphasize the bene�ts of DMA in that measures of forecast

performance are sometimes a bit better than those in Tables 1 and 2 and rarely much

worse. In Tables 1 and 2 we found that the combination � = � = 0:95 led to the

best forecast performance. Particularly at short and medium forecast horizons, we can

sometimes forecast a bit better by setting � = 0:95 and � = 0:99. Remember that the

value � = 0:95 allows for quite rapid change in forecasting model over time, but by setting

� = 0:99 less change in the coe¢ cients is allowed for. This is consistent with a story that

it appears that allowing for models to change over time is more important in improving

forecast performance than allowing for parameters to change (at least in our data set).

Table 4. Sensitivity Analysis: GDP de�ator in�ation

Forecast Method MAFE MSFE log PL

h = 1

DMA, � = 0:99; � = 0:95 38.29 15.04 -47.91

DMS, � = 0:99; � = 0:95 39.15 16.06 -46.77

DMA, � = 0:95; � = 0:99 38.55 14.37 -50.54

DMS, � = 0:95; � = 0:99 36.33 12.81 -31.49

h = 4

DMA, � = 0:99; � = 0:95 39.18 17.23 -61.16

DMS, � = 0:99; � = 0:95 40.17 18.11 -59.72

DMA, � = 0:95; � = 0:99 40.26 17.89 -65.63

DMS, � = 0:95; � = 0:99 38.92 16.40 -45.54

h = 8

DMA, � = 0:99; � = 0:95 44.56 22.65 -74.04

DMS, � = 0:99; � = 0:95 46.12 24.66 -73.15

DMA, � = 0:95; � = 0:99 46.85 23.49 -86.29

DMS, � = 0:95; � = 0:99 44.27 21.65 -64.95
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Table 5. Sensitivity Analysis: PCE de�ator in�ation

Forecast Method MAFE MSFE log PL

h = 1

DMA, � = 0:99; � = 0:95 41.39 17.93 -74.14

DMS, � = 0:99; � = 0:95 42.29 19.20 -75.52

DMA, � = 0:95; � = 0:99 39.51 15.81 -72.04

DMS, � = 0:95; � = 0:99 35.61 12.89 -52.72

h = 4

DMA, � = 0:99; � = 0:95 46.29 22.96 -92.30

DMS, � = 0:99; � = 0:95 49.21 25.73 -91.91

DMA, � = 0:95; � = 0:99 45.81 23.20 -94.11

DMS, � = 0:95; � = 0:99 44.67 21.25 -75.59

h = 8

DMA, � = 0:99; � = 0:95 48.95 26.45 -92.83

DMS, � = 0:99; � = 0:95 51.68 29.29 -91.30

DMA, � = 0:95; � = 0:99 50.07 26.25 -100.77

DMS, � = 0:95; � = 0:99 48.13 25.11 -82.70

4 Conclusions

This paper has investigated the use of DMA and DMS methods for forecasting US in-

�ation. These extend conventional approaches by allowing for the set of predictors for

in�ation to change over time. When you have K models and a di¤erent one can poten-

tially hold at each of T points in time, then the resulting KT combinations can lead to

serious computational and statistical problems (regardless of whether model averaging or

model selection is done). As shown in this paper, DMA and DMS handle these problems

in a simple, elegant and sensible manner.

In our empirical work, we present evidence indicating the bene�ts of DMA and DMS.

In particular, it does seem that the best predictors for forecasting in�ation are changing

considerably over time. By allowing for this change, DMA and DMS lead to substantial

improvements in forecast performance.
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Data Appendix

The variables used in this study were taken from the sources in the table below. PHIL

refers to the �Real-Time Data Set for Macroeconomists� database of the Philadelphia

Federal Reserve Bank. FRED refers to the FRED database of the St. Louis Federal Re-

serve Bank. The in�ation expectations index is maintained by the University of Michigan

and can be found in http://www.sca.isr.umich.edu/main.php. All series are seasonally

adjusted, where applicable, and run from 1960:Q1 to 2008:Q4. All variables are trans-

formed to be approximately stationary. In particular, for the in�ation variables we apply

the transformation (column Tcode in the table): 0 - yt+h = 400
h
(log (Pt+h)� log (Pt))

where Pt is the original price index series (GDP or Personal consumption expenditure),

and h is the forecast horizon. For the exogenous predictors, if we denote by zi;t the original

untransformed series, we apply the transformations (column Tcode in the table): 1 - no

transformation (levels), xi;t = zi;t; 2 - �rst di¤erence, xi;t = zi;t � zi;t�1 ; 4 - logarithm,
xi;t = log zi;t; 5 - �rst di¤erence of logarithm, xi;t = 100 (log zi;t � log zi;t�1).

# Mnemonic Tcode Description Source

1 PGDP 0 In�ation based on GDP de�ator PHIL

2 PCONX 0 In�ation based on PCE de�ator PHIL

3 UNEMP 1 Unemployment Rate PHIL

4 CONS 5 Real Personal Consumption Expenditures: To-

tal

PHIL

5 INV 5 Real Gross Private Domestic Investment: Resi-

dential

PHIL

6 GDP 5 Real Gross Domestic Product PHIL

7 HSTARTS 4 Housing Starts PHIL

8 EMPLOY 5 Nonfarm Payroll Employment PHIL

9 PMI 2 ISM Manufacturing: PMI Composite Index FRED

10 TBILL 1 3-Month Treasury Bill: Secondary Market Rate FRED

11 SPREAD 1 Spread 10-year T-Bond yield / 3-month T-Bill

(GS10 -TB3MS)

FRED

12 DJIA 5 Dow Jones Industrial Average Bloomberg

13 MONEY 5 M1 Money Stock PHIL

14 INFEXP 1 University of Michigan In�ation Expectations Uni. of Mich.

15 COMPRICE 2 NAPM Commodity Prices Index (Percent) Bloomberg

16 VENDOR 2 NAPM Vendor Deliveries Index (Percent) Bloomberg
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Appendix: Treatment of Error Variance in the Measurement
Equation
In the body of the paper, we pointed out the necessity of avoiding the use of MCMC

methods with our high-dimensional model space. Accordingly, we replaced the measure-

ment error variance, Ht, by an EWMA estimate with decay factor � = 0:98. In this

appendix, we investigate the empirical properties of this estimate by comparing it with a

popular alternative: the UC-SV model of Stock and Watson (2007). The UC-SV model

is given by:

yt = �t + "t; where "t = �";t�";t (18a)

�t+1 = �t + �t where �t = ��;t��;t (18b)

ln�";t = ln�";t�1 + v";t (18c)

ln��;t = ln��;t�1 + v�;t (18d)

where
�
�";t; ��;t

�
is i.i.d. N (0; I2) and (v";t; v�;t) is i.i.d. N (0; 
I2). Stock and Watson set


 = 0:2 and all other model parameters are estimated using MCMC. We compare this

model to a restricted version of our TVP model where yt is GDP de�ator in�ation.

To be precise, we use the TVP regression model given in (2a) and (2b) where zt = 1

(i.e. �t is a scalar which is the stochastic trend in in�ation). Equation (18c) is replaced

by our EWMA speci�cation. Equation (18d) is replaced by the approximation (6) using

a forgetting factor �. Figure 9 shows the estimates of the volatility of in�ation for the

UC-SV approach and our approach using two values of the forgetting factor. It can be

seen that the three lines in the graph are quite similar to one another. This illustrates

both that volatility estimates are reasonably robust to the choice of forgetting factor and

that the EWMA approach is yielding results that are similar to those provided by exact

estimation of a popular model.
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Figure 9: Volatility of In�ation
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