19 research outputs found

    Harmonization of Neuroticism and Extraversion phenotypes across inventories and cohorts in the Genetics of Personality Consortium : an application of Item Response Theory

    Get PDF
    Peer reviewe

    Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Meta-analysis of genome-wide association studies for extraversion:Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Towards motion capture with minimal sensing

    Get PDF
    Human motion capture is important for a wide variety of applications, e.g., biomechanical analysis, virtual reality and character animation. Current human motion capture solutions require a large number of markers/sensors to be placed on the body. In this work, it is shown that this can be reduced by using data-driven approaches. First a comparison of the use of lazy and eager learning methods for estimation of full-body movements from a minimal sensor set is done, which shows that both learning approaches lead to similar estimation accuracy. Next, improvements of the time coherency of output poses of the previously developed eager learning method are introduced by using a stacked input neural network. Results show that these deep and shallow learning approaches show comparable accuracy in estimation of full-body poses using only five inertial sensors. The developed approach is then applied to a running application, which shows that a subject-specific trained network estimates kinematics and kinetics with a higher accuracy (ρ > 0.99) than a network trained on multiple subjects (ρ > 0.9). An approach based on mechanical principles is applied for estimating the foot progression angle from a single foot-worn inertial sensor. Results show that the foot progression angle can be estimated with high accuracy compared to an optical reference (maximum mean error of 2.6◩). Finally, different motion capture approaches are compared during running, namely: based on inertial measurement units (processed with Xsens MVN Analyze) and optical markers (processed using Plug-In Gait and OpenSim Gait2392). The results show that mainly the sagittal plane has excellent correlation (ρ > 0.96) and RMSE (ρ < 6 degrees). The transversal and frontal planes showed less correlation. First steps towards reduced motion capture have been taken in this work, however, improvements are required for these techniques to be applied in different applications

    An iterative conditional dispatch algorithm for the dynamic dispatch waves problem

    No full text
    A challenge in same-day delivery operations is that delivery requests are typically not known beforehand, but are instead revealed dynamically during the day. This uncertainty introduces a trade-off between dispatching vehicles to serve requests as soon as they are revealed to ensure timely delivery, and delaying the dispatching decision to consolidate routing decisions with future, currently unknown requests. In this paper we study the dynamic dispatch waves problem, a same-day delivery problem in which vehicles are dispatched at fixed decision moments. At each decision moment, the system operator must decide which of the known requests to dispatch, and how to route these dispatched requests. The operator's goal is to minimize the total routing cost while ensuring all requests are served on time. We propose iterative conditional dispatch (ICD), an iterative solution construction procedure based on a sample scenario approach. ICD iteratively solves sample scenarios to classify requests to be dispatched, postponed, or undecided. The set of undecided requests shrinks in each iteration until a final dispatching decision is made in the last iteration We develop two variants of ICD: one variant based on thresholds, and another variant based on similarity. A significant strength of ICD is that it is conceptually simple and easy to implement. This simplicity does not harm performance: through rigorous numerical experiments, we show that both variants efficiently navigate the large state and action spaces of the dynamic dispatch waves problem and quickly converge to a high-quality solution. In particular, the threshold-based ICD variant improves over a greedy myopic strategy by 27.2% on average, and outperforms methods from the literature by 0.8% on average, and up to 1.5% in several cases

    A generic drift reduction technique for orientation estimation from biomechanical angular velocity

    No full text
    Inertial measurement units are used in ambulatory human movement analysis, but their use is often subject to domain- or application-specific assumptions and methods to compensate for drift in kinematic estimations. Here, we propose and evaluate a generic drift reduction technique for orientation estimation. A second order Taylor approximation for 3D orientation estimation from sampled angular velocity is derived and evaluated on a publicly available dataset containing angular velocity data of 4 runners. The use of a second order Taylor approximation substantially reduces drift when the angular velocity has considerable contributions along all three axes. The second order Taylor approximation could therefore facilitate the use of minimal sensor setups for the study of dynamic 3D human movements

    Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors

    Get PDF
    Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology. Furthermore, numerous body-worn sensors are required for a full-body motion analysis. The aim of this study is to examine the validity of a method to estimate sagittal knee joint angles and vertical ground reaction forces during running using an ambulatory minimal body-worn sensor setup. Two concatenated artificial neural networks were trained (using data from eight healthy subjects) to estimate the kinematics and kinetics of the runners. The first artificial neural network maps the information (orientation and acceleration) of three inertial sensors (placed at the lower legs and pelvis) to lower-body joint angles. The estimated joint angles in combination with measured vertical accelerations are input to a second artificial neural network that estimates vertical ground reaction forces. To validate our approach, estimated joint angles were compared to both inertial and optical references, while kinetic output was compared to measured vertical ground reaction forces from an instrumented treadmill. Performance was evaluated using two scenarios: training and evaluating on a single subject and training on multiple subjects and evaluating on a different subject. The estimated kinematics and kinetics of most subjects show excellent agreement (ρ > 0.99) with the reference, for single subject training. Knee flexion/extension angles are estimated with a mean RMSE 0.9) is still achieved for seven of the eight different evaluated subjects. The performance of multiple subject learning depends on the diversity in the training dataset, as differences in accuracy were found for the different evaluated subjects

    Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors

    No full text
    Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology. Furthermore, numerous body-worn sensors are required for a full-body motion analysis. The aim of this study is to examine the validity of a method to estimate sagittal knee joint angles and vertical ground reaction forces during running using an ambulatory minimal body-worn sensor setup. Two concatenated artificial neural networks were trained (using data from eight healthy subjects) to estimate the kinematics and kinetics of the runners. The first artificial neural network maps the information (orientation and acceleration) of three inertial sensors (placed at the lower legs and pelvis) to lower-body joint angles. The estimated joint angles in combination with measured vertical accelerations are input to a second artificial neural network that estimates vertical ground reaction forces. To validate our approach, estimated joint angles were compared to both inertial and optical references, while kinetic output was compared to measured vertical ground reaction forces from an instrumented treadmill. Performance was evaluated using two scenarios: training and evaluating on a single subject and training on multiple subjects and evaluating on a different subject. The estimated kinematics and kinetics of most subjects show excellent agreement (ρ&gt;0.99) with the reference, for single subject training. Knee flexion/extension angles are estimated with a mean RMSE &lt;5°. Ground reaction forces are estimated with a mean RMSE &lt; 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and maximal knee flexion during stance were compared, however, no significant differences were found. With multiple subject training the accuracy of estimating discrete and continuous outcomes decreases, however, good agreement (ρ &gt; 0.9) is still achieved for seven of the eight different evaluated subjects. The performance of multiple subject learning depends on the diversity in the training dataset, as differences in accuracy were found for the different evaluated subjects
    corecore