21 research outputs found

    The Effect of Rest Interval Length on Upper and Lower Body Exercises in Resistance-Trained Females

    Get PDF
    International Journal of Exercise Science 14(7): 1178-1191, 2021. The purpose of this study was to investigate the effects of SHORT (1 min) and LONG (3 min) rest intervals (RI) on total volume lifted (TVL), repetition performance, fatigue index (FI), and blood lactate [La] during upper body (chest press) and lower body (leg press) exercise with low-intensity (75% of a 10-RM) in trained female lifters. Fourteen females (mean ± SD, age = 22.9 ± 5.4 years, training experience = 5.2 ± 2.5 years, height = 166.1 ± 6.9 cm, weight = 61.3 ± 5.1 kg, body fat % = 21.7 ± 3.3%) participated in this randomized, repeated-measures, cross-over design study. They performed four sets to failure on chest press (CP) and leg press (LP) under two conditions (SHORT and LONG RIs) in a counterbalanced manner. Paired-samples t-tests were used to analyze mean differences for TVL in CP and LP, separately. A 2 (exercise) x 2 (rest interval) repeated measures ANOVA was used to analyze mean differences in FI and average [La] values. A 2 (rest interval) x 4 (sets) repeated measures ANOVA was used to analyze mean differences in repetitions completed for each exercise. TVL for SHORT was significantly less when compared to LONG for both exercises. There was no significant difference in average [La] between RIs despite a greater FI in SHORT compared to LONG for both exercises. Lastly, [La] was higher during LP compared to CP irrespective of RI length. These results suggest that longer RIs are better for female lifters who want to optimize TVL with low-intensity resistance training. Metabolic stress, as measured by blood lactate, was greater during lower-body exercise

    Effect of Novel Dietary Supplement on Metabolism in \u3cem\u3evitro\u3c/em\u3e and \u3cem\u3ein vivo\u3c/em\u3e

    Get PDF
    Obesity is an increasingly prevalent and preventable morbidity with multiple behavioral, surgical and pharmacological interventions currently available. Commercial dietary supplements are often advertised to stimulate metabolism and cause rapid weight and/or fat loss, although few well-controlled studies have demonstrated such effects. We describe a commercially available dietary supplement (purportedly containing caffeine, catechins, and other metabolic stimulators) on resting metabolic rate in humans, and on metabolism, mitochondrial content, and related gene expression in vitro. Human males ingested either a placebo or commercially available supplement (RF) in a randomized double-blind placebo-controlled cross-over fashion. Metabolic rate, respiratory exchange ratio, and blood pressure were measured hourly for 3 h post-ingestion. To investigate molecular effects, human rhabdomyosarcoma cells (RD) and mouse myocytes (C2C12) were treated with various doses of RF for various durations. RF enhanced energy expenditure and systolic blood pressure in human males without altering substrate utilization. In myocytes, RF enhanced metabolism, metabolic gene expression, and mitochondrial content suggesting RF may target common energetic pathways which control mitochondrial biogenesis. RF appears to increase metabolism immediately following ingestion, although it is unclear if RF provides benefits beyond those provided by caffeine alone. Additional research is needed to examine safety and efficacy for human weight loss

    Urban park use during the COVID-19 pandemic:Are socially vulnerable communities disproportionately impacted?

    Get PDF
    The COVID-19 pandemic altered human behavior around the world. To maintain mental and physical health during periods of lockdown and quarantine, people often engaged in outdoor, physically distanced activities such as visits to parks and greenspace. However, research tracking outdoor recreation patterns during the pandemic has yielded inconsistent results, and few studies have explored the impacts of COVID-19 on park use across diverse neighborhoods. We used a mixed methods approach to examine changes in park use patterns in cities across North Carolina, USA, during the COVID-19 pandemic, with an emphasis on impacts in socially vulnerable communities (based on racial/ethnic composition and socioeconomic status). First, we surveyed a demographically representative sample of 611 urban residents during August 2020 to assess their use of outdoor park spaces before and during the pandemic. Second, we used cell phone location (i.e., geo-tracking) data to document changes in park visits within 605 socioeconomically diverse urban census tracts before (July 2019) and during (July 2020) the pandemic. Data from both methods revealed urban park use declined during the pandemic; 56% of survey respondents said they stopped or reduced park use, and geo-tracked park visits dropped by 15%. Park users also became more homogenous, with visits increasing the most for past park visitors and declining the most in socially vulnerable communities and among individuals who were BIPOC or lower-income. Our results raise concerns about urban park use during the COVID-19 pandemic and suggest pre-existing health disparities in socially vulnerable communities might be exacerbated by inequitable access and utilization of parks and greenspace

    Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 1: Broadleaf species

    Get PDF
    Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC

    Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 3: Drivers of seed shatter

    Get PDF
    Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed-shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC

    Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 2: Grass species

    Get PDF
    Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased moving north through the states. At soybean maturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted to 5% to 100% (mean: 42%) by 25 d after soybean maturity. There were considerable differences in seed-shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output during certain years

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Effect of post-exercise caffeine and green coffee bean extract consumption on blood glucose and insulin concentrations

    No full text
    Objective The aim of this study was to investigate the effects of ingesting caffeine and green coffee bean extract on blood glucose and insulin concentrations during a post-exercise oral glucose tolerance test. Methods Ten male cyclists (age: 26 ± 5 y; height: 179.9 ± 5.4 cm; weight: 77.6 ± 13.3 kg; body mass index: 24 ± 4.3 kg/m2; VO2 peak: 55.9 ± 8.4 mL·kg·min−1) participated in this study. In a randomized order, each participant completed three 30-min bouts of cycling at 60% of peak power output. Immediately after exercise, each participant consumed 75 g of dextrose with either 5 mg/kg body weight of caffeine, 10 mg/kg of green coffee bean extract (5 mg/kg chlorogenic acid), or placebo. Venous blood samples were collected immediately before and after exercise during completion of the oral glucose tolerance test. Results No significant time × treatment effects for blood glucose and insulin were found. Two-h glucose and insulin area under the curve values, respectively, for the caffeine (658 ± 74 mmol/L and 30,005 ± 13,304 pmol/L), green coffee bean extract (637 ± 100 mmol/L and 31,965 ± 23,586 pmol/L), and placebo (661 ± 77 mmol/L and 27,020 ± 12,339 pmol/L) trials were not significantly different (P \u3e 0.05). Conclusion Caffeine and green coffee bean extract did not significantly alter postexercise blood glucose and insulin concentrations when compared with a placebo. More human research is needed to determine the impact of these combined nutritional treatments and exercise on changes in blood glucose and insulin

    Effect of novel dietary supplement on metabolism in vitro and in vivo

    Get PDF
    Obesity is an increasingly prevalent and preventable morbidity with multiple behavioral, surgical and pharmacological interventions currently available. Commercial dietary supplements are often advertised to stimulate metabolism and cause rapid weight and/or fat loss, although few well-controlled studies have demonstrated such effects. We describe a commercially available dietary supplement (purportedly containing caffeine, catechins, and other metabolic stimulators) on resting metabolic rate in humans, and on metabolism, mitochondrial content, and related gene expression in vitro. Human males ingested either a placebo or commercially available supplement (RF) in a randomized double-blind placebo-controlled cross-over fashion. Metabolic rate, respiratory exchange ratio, and blood pressure were measured hourly for 3 h post-ingestion. To investigate molecular effects, human rhabdomyosarcoma cells (RD) and mouse myocytes (C2C12) were treated with various doses of RF for various durations. RF enhanced energy expenditure and systolic blood pressure in human males without altering substrate utilization. In myocytes, RF enhanced metabolism, metabolic gene expression, and mitochondrial content suggesting RF may target common energetic pathways which control mitochondrial biogenesis. RF appears to increase metabolism immediately following ingestion, although it is unclear if RF provides benefits beyond those provided by caffeine alone. Additional research is needed to examine safety and efficacy for human weight loss
    corecore