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Abstract

Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control
(HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and
environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically impor-
tant grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to
4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-
Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed
shatter was lowest in the southern U.S. regions and increased moving north through the states.
At soybeanmaturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted
to 5% to 100% (mean: 42%) by 25 d after soybeanmaturity. There were considerable differences
in seed-shatter onset and rate of progression between sites and years in some species that could
impact their susceptibility to HWSC. Our results suggest that many summer annual grass spe-
cies are likely not ideal candidates for HWSC, although HWSC could substantially reduce their
seed output during certain years.

Introduction

Grasses such as giant foxtail (Setaria faberiHerrm.), yellow foxtail [Setaria pumila (Poir.) Roem.
& Schult.], and large crabgrass [Digitaria sanguinalis (L.) Scop.], each resistant to several her-
bicide sites of action (Heap 2019), are among the most common and problematic grass weeds in
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soybean [Glycine max (L.) Merr.] crop production systems in
the United States (Van Wychen 2015, 2016). Barnyardgrass
[Echinochloa crus-galli (L.) P. Beauv.] and jungle rice
[Echinochloa colona (L.) Link] are two other troublesome monocot
weeds in the midsouthern United States that have evolved resis-
tance to seven and three herbicide mechanisms of action, respec-
tively (Heap 2019; Rouse et al. 2018; Schwartz-Lazaro et al. 2017).
Because herbicide options to control these weeds are limited, new
management practices are urgently needed as weeds throughout
the United States continue to develop herbicide resistance (Heap
2019; Norsworthy et al. 2014; Walsh et al. 2018).

Harvest weed seed control (HWSC), a nonchemical weed con-
trol approach that targets the collection and destruction of weed
seeds during grain harvest, has helped Australian growers manage
herbicide-resistant weed populations (Walsh et al. 2013). Potential
effectiveness of HWSC systems depends upon seed retention of the
target weed species at crop maturity, enabling its collection and
processing at crop harvest and the effectiveness of the specific
HWSC tactics employed (Walsh et al. 2018). Plants of many
annual weed species shatter seeds at crop maturity in the United
States (Davis 2008; Norsworthy et al. 2014; Schwartz-Lazaro
et al. 2017; Walsh et al. 2018). The efficacy of seed destruction nec-
essary to reduce the soil seedbank using HWSC varies from 40% to
80% (Liebman and Davis 2009; Tidemann et al. 2016). Davis
(2008) reported that S. faberi shattered 35% of seed in corn (Zea
mays L.) and 45% of seed in soybean fields by harvest in east-
central Illinois. Grass weeds such as jointed goatgrass (Aegilops
cylindrica Host) and downy brome (Bromus tectorum L.) have
been found to shatter a low proportion (<25%) of seed at crop
maturity in eastern Colorado (Walsh et al. 2018). Preliminary field
surveys of winter wheat (Triticum aestivum L.) fields near Pullman,
WA, in 2013 found that 42% of Italian ryegrass [Lolium perenne L.
ssp. multiflorum (Lam.) Husnot] seeds were shattered 15 cm
(header height) above the soil surface at harvest (Walsh et al.
2018). However, lower seed retention (41% at harvest, and 32%
at 1 mo later) of E. crus-galli in soybean was reported from
Arkansas (Schwartz-Lazaro et al. 2017).

In studies conducted in Alberta and Saskatchewan, Canada,
green foxtail [Setaria viridis (L.) P. Beauv.], a common weed in
the northern Great Plains, had high seed retention rates (≥80%)
making it a suitable candidate for HWSC (Beckie et al. 2017;
Burton et al. 2016). However, the lower seed retention (20%) for
S. viridis observed in Minnesota cornfields at harvest (Forcella
et al. 1996) limits the benefit of using HWSC for S. viridis in the

region. The amount of weed seed retention at crop harvest varies
among weed species and is influenced by agronomic factors and
environmental conditions (Shirtliffe et al. 2000; Taghizadeh
et al. 2012). However, little research has been conducted to quan-
tify the seed retention rates of various economically important
monocot weeds in the United States, leaving the potential for
HWSC systems to manage problematic grass weeds in U.S. crop-
ping systems largely unknown. Here we present studies conducted
to determine the seed retention of eight economically important
grass weeds across the three major U.S. grain-producing regions.

Materials and Methods

Study Sites

We outlined a research protocol that included 11 states that were
divided into three geographical regions: South-Central, Mid-
Atlantic, and the North-Central regions. Field experiments were
conducted in 2016 and 2017. Each state collected data both years,
except for Tennessee, which only participated in 2016. Each loca-
tion planted soybean using local standard practices described in
local extension bulletins, including variety, seeding rate, row spac-
ing, fertility, and other practices, and collected information on
planting date, physiological maturity progression, and harvest date
(Table 1).

Data Collection

Sampling protocols were the same as the broadleaf species data col-
lection in Schwartz-Lazaro et al. (2021). Locally (within-state)
problematic weeds were chosen for study for each state.Weeds that
did not emerge from the soil seedbank were either seeded or trans-
planted into the crop. Transplanted weeds were of the same growth
stage as those in the study field to mimic having germinated with
the soybean crop. Weeds were transplanted in-row if the soil seed-
bank was not high enough to support a specific weed. A total of
eight grass species were examined. Other than the individual weeds
used in the studies, the soybean crop was kept weed-free through-
out the growing season. Once the weeds began to flower, four seed-
collection trays (F1721 Tray, T.O. Plastics, Clearwater, MN) were
placed around the bottom of at least 10 randomly chosen plants to
collect any seed shed from the plant. Trays were placed so that
there was not a gap between the trays or the tray and the base
of the plant. To help ensure trays captured shattered seed, if a plant
spread over the outer edges of the trays during the course of the

Table 1. Information pertaining to soybean planting, physiological maturity, and harvest dates across the different study sites in 2016 and 2017.

2016b 2017b

Regiona State Planting Physiological maturity Harvest Planting Physiological maturity Harvest

SC AR May 15 September 2 October 3 June 8 October 10 November 17
SC MS May 5 August 30 October 5 April 25 August 28 October 4
SC TN May 5 October 6 October 15 NA NA NA
SC TX May 10 September 14 October 19 June 19 October 6 November 10
NC IL May 20 September 11 October 16 May 15 September 21 October 9
NC MI May 26 October 7 November 11 May 21 October 1 October 9
NC MO May 5 September 23 November 7 May 15 October 7 November 2
MA DE June 14 October 10 November 3 May 18 October 23 November 22
MA MD May 27 September 9 October 24 May 18 September 20 October 23
MA NC May 25 October 11 Did not harvest May 10 October 6 Did not harvest
MA VA June 22 October 13 October 20 May 18 October 23 November 22

aRegions include South-Central (SC): Arkansas (AR), Mississippi (MS), Tennessee (TN), and Texas (TX); North-Central (NC): Illinois (IL), Michigan (MI), and Missouri (MO); and Mid-Atlantic (MA):
Delaware (DE), Maryland (MD), North Carolina (NC), and Virginia (VA).
bNA, data unavailable.
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study, it was trained using twine and stakes to keep the entire plant
over the trays. The greenhouse trays were emptied weekly using a
portable vacuum and placed into envelopes for counting (see
Schwartz-Lazaro et al. 2021). At the conclusion of the experiment,
the plants were harvested to obtain a final seed count and deter-
mine the percentage of seed retention.

Data Processing and Statistical Analysis

Our analysis of grass species was conducted using the same meth-
ods as our broadleaf analysis. For details, readers should refer to the
statisticalmethods in “Part 1:Broadleaf Species” (Schwartz-Lazaro
et al. 2021). The emphasis of the analysis was to quantitatively and
qualitatively describe the phenology of seed shatter at the site, spe-
cies, and individual plant level in relation to soybean maturity. We
will very briefly summarize the analysis here. All analyses were
based on calculations of percent cumulative seed shatter over time,
either at the site, species, or individual plant level. Seed shatter was
calculated as the number of seeds that had shattered at a particular
time point divided by the total seasonal seed production, including
unshattered seed that was retained.

We plotted spatial heat maps to visualize regional to continental
patterns in the rates of combined grass weed seed shatter during
the weeks following soybean maturity. These were created using
calculations of total cumulative seed shatter of all grass species
studied within each state during the week of soybean maturity
and at 2, 3, and 4 wk following maturity. States were only plotted
on the map if they sampled during a given time interval. For exam-
ple, if a state sampled within ±3 d of maturity (a 7-d window cen-
tered on the maturity date), we plotted it on the “week of maturity”
map. To visualize how the distribution of seed shatter progressed at
the species level, looking across states, the cumulative seed-shatter
percentage values were converted to categorical groups and binned
by increments of 10% (i.e., 0%<= shatter <10%, 10%<= shatter
<20%, etc.), and the number of site-years in each bin was tallied
for each species. These were then plotted as heat maps showing

the percent of site-years for each species in each bin for each time
interval. Finally, we calculated mean per capita daily seed rain rates
(i.e., seeds plant−1 d−1) and mean per capita cumulative percent
seed shatter for each species during the first 1 to 4 wk following
maturity, accounting for site and year differences. Themodels used
individual sample plants as the unit of replication with site, year,
and their interaction as fixed effects. For analyses of seed rain rate,
we used linear models with normally distributed errors. For analy-
ses of percent seed shatter, we used generalized linear models with
binomial errors for the proper fitting of proportion data. Because
not all species were sampled in the same sites during both 2016 and
2017, themodel structure had to be tailored to the data available for
each species. The model structure and selection process are
detailed in Schwartz-Lazaro et al. (2021). We ran these tests with
different model structures depending on data availability, because
some species were not sampled in multiple sites, and others were
only sampled in a single year. Although some species were studied
in multiple sites and for multiple years, most were not studied in
the same set of sites for both years. Thus, we were only able to fit
site by year interactions in S. faberi (Schwartz-Lazaro et al. 2021).
For one species, goosegrass [Eleusine indica (L.) Gaertn.], sampling
was ended before the second week postmaturity and was only
assessed at week 1. For two others, broadleaf signalgrass
[Urochloa platyphylla (Munro ex C. Wright) R.D. Webster], and
Texas millet [Urochloa texana (Buckley) R. Webster], sampling
began after soybean maturity in 2016. All others were sampled
at soybean maturity and at both 1 and 2 wk after maturity. All data
processing and analyses were conducted in R (R Core Team 2018).

Results and Discussion

As in our study of broadleaf weed phenology (Schwartz-Lazaro
et al. 2021), cumulative percent seed shatter was lowest in the
southern U.S. regions and increased moving north through the
states (Figure 1). This trend remained from soybean physiological
maturity through maturity plus 4 wk. This result is consistent with

Figure 1. Heat map indicating the cumulative percent seed shatter across the participating states for a window starting from soybean physiological maturity to 4 wk past
physiological maturity in 2016 and 2017. States were included in these maps only if they conducted sampling during the week indicated. (e.g., In 2017, Arkansas sampled
on October 2, October 18, and November 3, none of which are within ±3 d of the October 10 maturity date or maturity þ2 wk on October 24 in the state that year. Hence only
data from maturity þ3 wk are for Arkansas for 2017.)

106 Schwartz-Lazaro et al.: Grass weed seed shattering

https://doi.org/10.1017/wsc.2020.79 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2020.79


Table 2. Predicted daily per capita seed rain rate (seeds plant−1 day−1) and per capita cumulative seed shatter (%) with their standard error (SE) values.a

Maturityþ 1 wk Maturityþ 2 wk

Species
Site-
year Nb

Seed rain
(SE) Testc P

% Seed
shatter
(SE) Testc P

Site-
year Nb

Seed rain
(SE) Testc P

% Seed
shatter (SE) Testc P

Digitaria san-
guinalis

2 39 417.8
(76.1)

F1,37=
417.8

0.0442 46.1 (0.1) �2
1 = 7.2 0.0075 2 39 528.1

(90.3)
F1,37= 14.9 0.0004 53.4 (0.1) �2

1 = 1,151 0.0001

Echinochloa
crus-galli

4 64 30.9 (3.9) F3,60= 30.9 <0.0001 9.7 (0.1) �2
3 = 11,155.6 0.0001 4 64 30.5 (3.1) F3,60= 30.9 <0.0001 12.2 (0.1) �2

3 = 15,468.7 0.0001

Echinochloa
colona

1 8 228.5
(56.4)

t7= 228.5 0.0049 8.3 (0.0) NA NA 1 8 316.9
(99.2)

t7= 3.2 0.0152 14.0 (0.1) NA NA

Eleusine indica 1 24 12.2 (1.9) t23= 12.2 <0.0001 7.7 (0.1) NA NA 0 0 NA NA NA NA NA NA
Urochloa tex-
ana

2 16 75.4 (19.2) F1,14= 75.4 0.0547 32.1 (0.2) �2
1 = 1,787.3 0.0001 2 16 82.9 (19.1) F1,14= 3.2 0.0957 47.5 (0.2) �2

1 = 8,558.7 0.0001

Setaria faberi 7 105 55.8 (24.9) F5,99= 55.8 <0.0001 36.9 (0.3) �2
5 = 297,863.4 0.0001 6 101 102.4

(16.0)
F4,96= 7.1 0.0001 61.5 (0.2) �2

4 = 230,677 0.0001

Sorghum hale-
pense

2 13 1.7 (0.4) F1,11= 1.7 0.4521 2.1 (0.1) �2
1 = 29.2 0.0001 2 13 1.7 (0.3) F1,11= 7.3 0.0207 2.7 (0.1) �2

1 = 129.3 0.0001

Urochloa platy-
phylla

1 16 68.1 (10.3) t15= 68.1 <0.0001 50.0 (0.2) �2
1 = 7.2 0.0075 1 16 78.4 (10.3) t15= 7.6 <0.0001 76.8 (0.2) NA NA

Maturityþ 3 wk Maturityþ 4 wk

Species
Site-
year Nb

Seed rain
(SE) Testc P

% Seed
shatter
(SE) Testc P

Site-
year Nb

Seed rain
(SE) Testc P

% Seed
shatter (SE) Testc P

Digitaria san-
guinalis

1 24 714.3
(97.0)

t23= 7.4 <0.0001 58.6 (0.0) NA NA 2 39 357.6
(54.3)

t37= 16.7 0.0002 60.6 (0.1) �2
1 = 93.1 <0.0001

Echinochloa
crus-galli

4 64 31.4 (4.0) F3,60= 21.2 <0.0001 14.5 (0.1) �2
3 = 22,402.7 0.0001 4 64 30.9 (3.9) F3,60= 21.4 <0.0001 17.3 (0.1) �2

3 = 26,600.6 <0.0001

Echinochloa
colona

1 8 1,980.5
(1,749.6)

t7= 1.1 0.2949 93.2 (0.0) NA NA 1 8 1,583.4
(1,374.5)

t7= 1.2 0.2871 94.7 (0.0) NA NA

Eleusine indica 0 0 NA NA NA NA NA NA 0 0 NA NA NA NA NA NA
Urochloa tex-
ana

2 15 89.7 (21.6) F1,13= 2.5 0.1346 62.7 (0.2) �2
1 = 15,587.8 0.0001 1 6 130.1

(49.3)
F1,5= 2.6 0.0459 46.3 (0.2) NA NA

Setaria faberi 5 77 75.6 (9.2) F4,72= 34.9 <0.0001 49.4 (0.3) �2
4 = 160,563.9 0.0001 4 73 119.4

(11.4)
F3,69= 20.1 <0.0001 51.4 (0.1) �2

3 = 44,094.9 <0.0001

Sorghum hale-
pense

2 13 1.7 (0.3) F1,11= 0.1 0.7078 3.1 (0.1) �2
1 = 102.7 0.0001 2 13 1.9 (0.5) F1,11= 0.0 0.8964 3.7 (0.1) �2

1 = 128.1 <0.0001

Urochloa platy-
phylla

1 16 69.6 (8.7) t15= 8.0 <0.0001 87.4 (0.1) NA NA 0 0 NA NA NA 60.6 (0.1) �2
1 = 93.1 <0.0001

aSeed rain rates were calculated from soybean physiological maturity to 1, 2, 3, or 4 wk after maturity. Cumulative seed shatter was calculated from the beginning of seed shatter through 1, 2, 3, or 4 wk after soybean physiological maturity. Cumulative shatter values are
predicted from fitted logistic regressions for each species after accounting for differences due to states and years. χ2 values are from likelihood ratio tests comparing the fitted model with a null model. No test was performed for species with just a single site-year of data
(indicated as “NA”), because we had already fit intercept-only null models to these.
bN is equivalent to the total number of plants for all sites and years.
cModel structureswere dependent on the number of sites and years for each species. Themodel test used in seed rain rate analyses is determined by themodel structure thatwas fit to each species: F-tests were used for seed rain ratemodels with state and/or year fixed effects;
t-tests were used for intercept-only seed rain rate models; χ2 tests were used for likelihood ratio tests of binomial generalized linear models of seed shatter (%). No likelihood ratio tests were conducted for species with only 1 site-year of data.
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previous studies that showed low seed retention (<40%) for
S. faberi, E. crus-galli, A. fatua, spiny annual sow thistle
[Sonchus asper (L.) Hill], and S. viridis in North American regions
(Beckie et al. 2017; Burton et al. 2016; Forcella et al. 1996;
Schwartz-Lazaro et al. 2017; Shirtliffe et al. 2000; Tidemann
et al. 2017). Further, the eight grass weed species’ percent shatter
continually increased from soybean physiological maturity to har-
vest maturity (Tables 2 and 3; Figure 2). While the annual grass
weeds have low seed retention, Johnsongrass [Sorghum halepense

(L.) Pers.], a perennial grass weed, had high seed retention of>96%
in Texas (Tables 2 and 3), which is similar to results reported by
Walsh et al. 2018. This finding potentially indicates that the life
cycle of the weed influences seed retention of a species.

The two most frequently examined grass species in the present
study were E. crus-galli and S. faberi. Echinochloa crus-galli was
examined by most of the South-Central region states and S. faberi
by the North-Central and Mid-Atlantic regions (Figure 3). As for
the broadleaf weeds (Schwartz-Lazaro et al. 2021), one of the more

Table 3. Cumulative percent seed shatter of the pooled individual plants at each time interval, separated by species, state, and region.

Species Regiona State

Maturity
Maturityþ

2 wk
Maturityþ

3 wk
Maturityþ

4 wk Maturity
Maturityþ

2 wk
Maturityþ

3 wk
Maturityþ

4 wk

2016 2017

Digitaria sanguinalis MA VA 40.9 55.3 58.6 60.0 32.1 51.4 — 61.1
Echinochloa crus-galli SC AR 3.3 6.4 7.2 9.0 — — 98.4 —

Echinochloa crus-galli SC MS 6.8 9.5 10.4 11.4 4.2 6.7 7.7 9.0
Echinochloa crus-galli SC TX — — — — 17.7 30.9 39.0 45.3
Echinochloa colona SC TX 5.0 14.0 93.2 94.7 — — — —

Eleusine indica SC TN 6.2 — — — — — — —

Urochloa texana MA NC — 20.0 28.8 53.1 29.6 65.7 83.1 —

Urochloa texana SC TX — — — — 19.6 31.6 38.7 46.3
Setaria faberi NC IL — — — — 1.6 — 19.3 —

Setaria faberi NC MI — — — — 16.0 72.8 — —

Setaria faberi NC MO 16.5 33.9 42.2 48.2 45.4 67.4 — 71.9
Setaria faberi MA DE — — — — 86.1 88.7 89.0 —

Setaria faberi MA VA 23.6 34.0 39.0 50.2 6.7 26.8 27.6 34.4
Sorghum halepense SC TX 1.5 1.8 2.2 2.6 1.7 4.1 4.4 5.3
Urochloa platyphylla MA NC — 29.0 38.7 60.2 32.8 76.8 87.4 —

aRegions include South-Central (SC): Arkansas (AR), Mississippi (MS), Tennessee (TN), and Texas (TX); North-Central (NC): Illinois (IL), Michigan (MI), and Missouri (MO); and the Mid-Atlantic (MA):
Delaware (DE), Maryland (MD), North Carolina (NC), and Virginia (VA). A dashed line (—) indicates that there are no data for that time period.

Figure 2. Cumulative percent shatter over four time periods (maturity, maturityþ 2 wk, maturityþ 3 wk, maturityþ 4 wk) for each species. The darker the bar, the greater
percent of sampled site-years that corresponded to the percent shatter value. This normalizes across species with different sampling efforts. Species sampled in just a single
site-year are indicated by a single black square, which represents 100% of the sampling effort. Species are denoted by their EPPO codes
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striking outcomes was the difference in variation across sites from
year to year. In both species, there was little variation in seed-
shatter progression between sites in 2016, while seed shatter was
highly varied across sites in 2017. Both species were studied in
more sites in 2017, but the pattern is noteworthy. Of the differences
that were seen, more seed shatter occurred in 2017 overall than in
2016. The large range of percent seed shattered in these species
could be due in part to annual differences in weather or regional
differences. At soybean maturity the percent of seeds shattered
ranged from 1% to 70% across species (Table 2). However, at 3
to 4 wk after soybean maturity, that range shifted to 5% to
100% (mean: 42%) seeds shattered. After accounting for site and
year differences, E. crus-galli still retained over 80% of its seeds
at 4 wk after soybean physiological maturity (Table 2) and consid-
erably more during some sites and years (Table 3; Figure 3).

These results indicate that many summer annual grass species
are likely not to be controlled consistently or adequately with
HWSC, but S. halepense, a perennial, could be. While seed spread
can be contained through HWSC, it will not manage rhizomes and
other belowground perennial structures, so these must bemanaged
by other means. Seed shatter in the annual grasses began before
soybean maturity; thus, some additions to the soil seedbank had
already been made by harvest. Soybean harvest can vary dramati-
cally across regions, being earlier in the year in the southern United
States and later (1 to 3mo) in the northern United States. However,
in some annual species (e.g., E. crus-galli), it may be possible to cap-
ture a significant amount (60% to 90%) of seed production with
HWSC within 2 to 4 wk of soybean maturity during certain years,
Variation within species across sites might indicate that the out-
come will be variable between years and locations. While this

Figure 3. Cumulative percent seed shatter for all species from planting date to soybean physiological maturity (black vertical line) across the participating states in 2016
and 2017.
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would not result in eradication, it could lead to meaningful reduc-
tions in weed populations. Furthermore, header height, seed that is
below the header, seed that is shattered at the header and not
brought into the combine, and delayed harvest are all factors that
could result in a limited amount of weed seed entering the combine
to go through a HWSC tactic. More research is needed on what can
be done to reduce inputs from grassy weeds to the soil seedbank as
well as the amount of time that these weeds could begin to select for
earlier shattering potential with the selection pressures of HWSC.
Additionally, other economically important summer and cool-sea-
son annual grass weeds need to be evaluated for seed retention at
harvest.
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