7 research outputs found

    Connexin30.2:<i>In vitro</i> interaction with connexin36 in hela cells and expression in AII amacrine cells and intrinsically photosensitive ganglion cells in the mouse retina

    Get PDF
    Electrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined. In the primary rod pathway, gap junctions play a crucial role, coupling AII amacrine cells among each other and to ON cone bipolar cells. Although it has long been known that connexin36 and connexin45 are necessary for the proper functioning of this most sensitive rod pathway, differences between homocellular AII/AII gap junctions and AII/ON bipolar cell gap junctions suggested the presence of an additional connexin in AII amacrine cells. Here, we used a connexin30.2-lacZ mouse line to study the expression of connexin30.2 in the retina. We show that connexin30.2 is expressed in intrinsically photosensitive ganglion cells and AII amacrine cells. Moreover, we tested whether connexin30.2 and connexin36 – both expressed in AII amacrine cells – are able to interact with each other and are deposited in the same gap junctional plaques. Using newly generated anti-connexin30.2 antibodies, we show in HeLa cells that both connexins are indeed able to interact and may form heteromeric channels: both connexins were co-immunoprecipitated from transiently transfected HeLa cells and connexin30.2 gap junction plaques became significantly larger when co-expressed with connexin36. These data suggest that connexin36 is able to form heteromeric gap junctions with another connexin. We hypothesize that co-expression of connexin30.2 and connexin36 may endow AII amacrine cells with the means to differentially regulate its electrical coupling to different synaptic partners

    Data from: Climatic effects on population declines of a rare wetland species and the role of spatial and temporal isolation as barriers to hybridization

    No full text
    Climate change and climatic extremes may affect species directly or indirectly. While direct climatic effects have been intensively studied, indirect effects, such as increasing hybridization risk, are poorly understood. The goal of our study was to analyse the impact of climate on population dynamics of a rare habitat specialist, Chorthippus montanus, as well as the fine-scale spatial overlap with a sympatric habitat generalist, Chorthippus parallelus and the dispersion of hybrids. We were particularly interested in the role of spatiotemporal overlap on heterospecific encounter frequencies. We conducted high-precision mark-recapture studies on two sites over 7 years and genotyped 702 individuals of two C. montanus generations to detect hybrids. We tested the performance of three programs (structure, newhybrids and adegenet) and accepted only hybrids detected by the two best performing programs. We then tested for correlations between yearly population trends and climatic variables. Furthermore, we analysed the spatial dispersion of both taxa and the hybrids to calculate variation in spatial and temporal overlap and infer heterospecific encounter probabilities. Our results revealed that droughts during the egg phase and rainy weather during nymphal development were strongly correlated with population declines in the habitat specialist. The highest hybridization rate (19·6%) was found in the population with lowest population size. The combined effects of spatial and temporal niche overlap decreased heterospecific encounter probabilities to 4·2–7·6% compared to 20–28% and 11–19% calculated alone from phenology or spatial overlap respectively. Hybrids were detected in areas of higher heterospecific encounter probability, mainly at the edge of the specialists’ occupied habitat in areas with intermediate soil moisture conditions compared to the parental species. This illustrates that the combination of spatial and temporal segregation provides an effective barrier to hybridization. However, the high hybridization rate in one of the populations suggests that this function may decrease with decreasing population size. This supports the hypothesis that climatic extremes threaten rare species directly by reducing reproductive success and may indirectly increase hybridization risk

    Bendamustine Combined With Rituximab in Patients With Relapsed and/or Refractory Chronic Lymphocytic Leukemia: A Multicenter Phase II Trial of the German Chronic Lymphocytic Leukemia Study Group

    No full text
    Purpose The objective of this trial was to evaluate safety and efficacy of bendamustine combined with rituximab (BR) in patients with relapsed and/or refractory chronic lymphocytic leukemia (CLL). Patients and Methods Seventy-eight patients, including 22 patients with fludarabine-refractory disease (28.2%) and 14 patients (17.9%) with deletion of 17p, received BR chemoimmunotherapy. Bendamustine was administered at a dose of 70 mg/m(2) on days 1 and 2 combined with rituximab 375 mg/m(2) on day 0 of the first course and 500 mg/m(2) on day 1 during subsequent courses for up to six courses. Results On the basis of intent-to-treat analysis, the overall response rate was 59.0% (95% CI, 47.3% to 70.0%). Complete response, partial response, and nodular partial response were achieved in 9.0%, 47.4%, and 2.6% of patients, respectively. Overall response rate was 45.5% in fludarabine-refractory patients and 60.5% in fludarabine-sensitive patients. Among genetic subgroups, 92.3% of patients with del(11q), 100% with trisomy 12, 7.1% with del(17p), and 58.7% with unmutated IGHV status responded to treatment. After a median follow-up time of 24 months, the median event-free survival was 14.7 months. Severe infections occurred in 12.8% of patients. Grade 3 or 4 neutropenia, thrombocytopenia, and anemia were documented in 23.1%, 28.2%, and 16.6% of patients, respectively. Conclusion Chemoimmunotherapy with BR is effective and safe in patients with relapsed CLL and has notable activity in fludarabine-refractory disease. Major but tolerable toxicities were myelosuppression and infections. These promising results encouraged us to initiate a further phase II trial evaluating the BR regimen in patients with previously untreated CLL
    corecore