88 research outputs found

    Interdependence of Inhibitor Recognition in HIV-1 Protease

    Get PDF
    Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1\u27 and S2\u27 subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1\u27 subsite highly influences other subsites: the extension of the hydrophobic P1\u27 moiety results in 1) reduced van der Waals contacts in the P2\u27 subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor

    WHODAS 2.0 in prodromal Huntington disease : measures of functioning in neuropsychiatric disease

    Get PDF
    We thank the PREDICT-HD sites, the study participants, the National Research Roster for Huntington Disease Patients and Families, the Huntington’s Disease Society of America and the Huntington Study Group. This research was supported by the National Center for Advancing Translational Sciences, and the National Institutes of Health (NIH), through Grant 2 UL1 TR000442-06. This research is supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke (NS040068), CHDI Foundation, Inc (A3917), Cognitive and Functional Brain Changes in Preclinical Huntington’s Disease (HD) (5R01NS054893), 4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington’s (1U01NS082086), Functional Connectivity in Pre-manifest Huntington’s Disease (1U01NS082083), and Basal Ganglia Shape Analysis and Circuitry in Huntington’s Disease (1U01NS082085).Peer reviewedPublisher PD

    Performance of the 12-item WHODAS 2.0 in prodromal Huntington disease

    Get PDF
    ACKNOWLEDGEMENTS We thank the PREDICT-HD sites, the study participants, the National Research Roster for Huntington Disease Patients and Families, the Huntington’s Disease Society of America and the Huntington Study Group. This publication was supported by the National Center for Advancing Translational Sciences, and the National Institutes of Health (NIH), through Grant 2 UL1 TR000442-06. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This research is supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke (5R01NS040068) awarded to Dr Paulsen, CHDI Foundation, Inc (A3917) awarded to Dr Paulsen, Cognitive and Functional Brain Changes in Preclinical Huntington’s Disease (HD) (5R01NS054893) awarded to Dr Paulsen, 4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington’s (1U01NS082086), Functional Connectivity in Premanifest Huntington’s Disease (1U01NS082083), and Basal Ganglia Shape Analysis and Circuitry in Huntington’s Disease (1U01NS082085).Peer reviewedPublisher PD

    Deconstructing doing well; what can we learn from care experienced young people in England, Denmark and Norway?

    Get PDF
    This paper addresses the conceptualization of ‘outcomes’ for care experienced people through an in-depth longitudinal study of 75 young adults in Denmark, England and Norway. ‘Outcome’ studies have played a crucial role in raising awareness of the risk of disadvantage that care experienced people face, across a variety of domains including education and employment. These studies may have an unintended consequence, however, if care experienced people are predominantly viewed, and studied, through a problem-focused lens. The danger is that policy and research neglects other – perhaps less readily measurable – aspects of experience, including subjective understandings – what matters to care experienced people themselves. Our analyses are based on an in-depth qualitative longitudinal study, which explored meanings of ‘doing well’ over time among care experienced people (aged 16–32), all of whom were ‘successful’ in relation to traditional indicators of participation in education and/or employment (including voluntary work). Across countries, their accounts revealed the importance of attending to subjective and dynamic understandings of ‘doing well’, and the significance of ordinary, mundane and ‘do-able’ lives. Participants’ narratives highlight aspects of doing well that raise challenging questions about how traditional outcome indicators – and corresponding policy priorities – might better capture what young people themselves see as important. A narrow interpretation of outcomes may lead to misrecognition of what it means to do well, and so to a stigmatizing ‘way of seeing’ care experienced lives. A broader conceptualization of outcomes is necessary to recognize – and so to develop policy and services to support – the complex, dynamic relationality of doing well

    Large-Scale Screening of a Targeted Enterococcus faecalis Mutant Library Identifies Envelope Fitness Factors

    Get PDF
    Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% Gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Hydration Structure and Dynamics of Inhibitor-Bound HIV-1 Protease

    No full text
    Water is essential in many biological processes, and the hydration structure plays a critical role in facilitating protein folding, dynamics, and ligand binding. A variety of biophysical spectroscopic techniques have been used to probe the water solvating proteins, often complemented with molecular dynamics (MD) simulations to resolve the spatial and dynamic features of the hydration shell, but comparing relative water structure is challenging. In this study 1 mus MD simulations were performed to identify and characterize hydration sites around HIV-1 protease bound to an inhibitor, darunavir (DRV). The water density, hydration site occupancy, extent and anisotropy of fluctuations, coordinated water molecules, and hydrogen bonds were characterized and compared to the properties of bulk water. The water density of the principal hydration shell was found to be higher than bulk, dependent on the topology and physiochemical identity of the biomolecular surface. The dynamics of water molecules occupying principal hydration sites was highly dependent on the number of water-water interactions and inversely correlated with hydrogen bonds to the protein-inhibitor complex. While many waters were conserved following the symmetry of homodimeric HIV protease, the asymmetry induced by DRV resulted in asymmetric lower-occupancy hydration sites at the concave surface of the active site. Key interactions between water molecules and the protease, that stabilize the protein in the inhibited form, were altered in a drug resistant variant of the protease indicating that modulation of solvent-solute interactions might play a key role in conveying drug resistance. Our analysis provides insights into the interplay between an enzyme inhibitor complex and the hydration shell and has implications in elucidating water structure in a variety of biological processes and applications including ligand binding, inhibitor design, and resistance
    • 

    corecore