27 research outputs found

    Rock Ptarmigan (Lagopus muta) breeding habitat use in northern Sweden

    Get PDF
    This is the postprint version of the article. The published article can be located at www.springerlink.comAlpine and arctic tundra regions are likely to retract as a result of climate warming and concerns have been raised over the status of the Rock Ptarmigan (Lagopus muta). In Fennoscandia, the Rock Ptarmigan has low population abundance, and predictions based on harvest statistics show population declines throughout the range. In this study, we used a long-term opportunistic dataset of Rock Ptarmigan observations, environmental predictors derived from a digital vegetation map and a digital elevation model to describe the breeding distribution at three different ecological scales. Patterns of spatial distribution were similar across all the three study scales. The presence of permanent snow-fields positively influenced the occurrence of Rock Ptarmigan at the territory and landscape scale. Open vegetation, rock-dominated areas and, in particular, dry heath influenced Rock Ptarmigan presence positively at all scales. Altitude and terrain heterogeneity were important variables at all scales, with higher probabilities of Rock Ptarmigan being present at intermediate altitude ranges, with a high degree of terrain heterogeneity. This is the first study to describe Rock Ptarmigan breeding distribution in Fennoscandia and our findings yield new insights into the environmental variables that are important for the spatial distribution of Rock Ptarmigan during the breeding season. When planning conservation efforts, this information should be used to inform management regarding the protection of core areas and buffer zones related to the conservation and harvest management of the Rock Ptarmigan.2014-09-3

    Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems

    Get PDF
    Disturbance regimes are changing in forests across the world in response to global climate change. Despite the profound impacts of disturbances on ecosystem services and biodiversity, assessments of disturbances at the global scale remain scarce. Here, we analyzed natural disturbances in boreal and temperate forest ecosystems for the period 2001-2014, aiming to 1) quantify their within- and between-biome variation and 2) compare the climate sensitivity of disturbances across biomes. We studied 103 unmanaged forest landscapes with a total land area of 28.2 x 10(6) ha, distributed across five continents. A consistent and comprehensive quantification of disturbances was derived by combining satellite-based disturbance maps with local expert knowledge of disturbance agents. We used Gaussian finite mixture models to identify clusters of landscapes with similar disturbance activity as indicated by the percent forest area disturbed as well as the size, edge density and perimeter-area-ratio of disturbed patches. The climate sensitivity of disturbances was analyzed using Bayesian generalized linear mixed effect models and a globally consistent climate dataset. Within-biome variation in natural disturbances was high in both boreal and temperate biomes, and disturbance patterns did not vary systematically with latitude or biome. The emergent clusters of disturbance activity in the boreal zone were similar to those in the temperate zone, but boreal landscapes were more likely to experience high disturbance activity than their temperate counterparts. Across both biomes high disturbance activity was particularly associated with wildfire, and was consistently linked to years with warmer and drier than average conditions. Natural disturbances are a key driver of variability in boreal and temperate forest ecosystems, with high similarity in the disturbance patterns between both biomes. The universally high climate sensitivity of disturbances across boreal and temperate ecosystems indicates that future climate change could substantially increase disturbance activity.Peer reviewe

    Northern Fennoscandia via the British Isles: evidence for a novel postglacial recolonization route by winter moth (Operophtera brumata)

    Get PDF
    The frequency and severity of outbreaks by pestiferous insects is increasing globally, likely as a result of human-mediated introductions of non-native organisms. However, it is not always apparent whether an outbreak is the result of a recent introduction of an evolutionarily naïve population, or of recent disturbance acting on an existing population that arrived previously during natural range expansion. Here we use approximate Bayesian computation to infer the colonization history of a pestiferous insect, the winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), which has caused widespread defoliation in northern Fennoscandia. We generated genotypes using a suite of 24 microsatellite loci and find that populations of winter moth in northern Europe can be assigned to five genetically distinct clusters that correspond with 1) Iceland, 2) the British Isles, 3) Central Europe and southern Fennoscandia, 4) Eastern Europe, and 5) northern Fennoscandia. We find that the northern Fennoscandia winter moth cluster is most closely related to a population presently found in the British Isles, and that these populations likely diverged around 2,900 years ago. This result suggests that current outbreaks are not the result of a recent introduction, but rather that recent climate or habitat disturbance is acting on existing populations that may have arrived to northern Fennoscandia via pre-Roman traders from the British Isles, and/or by natural dispersal across the North Sea likely using the Orkney Islands of northern Scotland as a stepping-stone before dispersing up the Norwegian coast. © 2021. The authors, CC-BY 4.0 license.</p

    Spatial patterns of goose grubbing suggest elevated grubbing in dry habitats linked to early snowmelt

    No full text
    The western Palaearctic tundra is a breeding habitat for large populations of European geese. After their arrival in spring, pink-footed geese (Anser brachyrhynchus) forage extensively on below-ground plant parts, using a feeding technique called grubbing that has substantial impact on the tundra vegetation. Previous studies have shown a high frequency of grubbing in lowland fen vegetation. In the present study, we examined the occurrence of grubbing in other habitat types on Spitsbergen, in the Arctic archipelago of Svalbard. Goose grubbing was surveyed along 19 altitudinal transects, going from the valley bottom to altitudes dominated by scree. Grubbing was more frequent in the wet habitat type at low altitudes compared to the drier habitat type at higher altitudes. For the dry habitat type, a higher frequency of grubbing was found in study plots with a south-east facing exposure where snowmelt is expected to be early. This suggests that pink-footed geese primarily use dry vegetation types for grubbing when they are snow-free in early spring and the availability of snow-free patches of the preferred wet vegetation types in the lowlands is limited. Dry vegetation types have poorer recovery rates from disturbance than wet ones. Sites with early snowmelt and dry vegetation types may therefore be at greater risk of long-term habitat degradation. We conclude that the high growth rate of the Svalbard-breeding pink-footed goose population suggests that increasing impacts of grubbing can be expected and argue that a responsible monitoring of the effects on the tundra ecosystem is crucial

    Data from: Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest?

    No full text
    1. The boreal biome exhibits distinct alternative ecosystem states with high and low levels of tree-cover. Insect outbreaks facilitated by climate warming could potentially drive transitions from high to low tree-cover states. We investigated whether two key premises for such outbreak-induced transitions – critical thresholds (tipping points) and positive feedbacks that could maintain alternative states – are present in the northern-boreal mountain birch forest of Fennoscandia. Here, climate warming has promoted range expansions of defoliating geometrid moths, resulting in novel, severe multispecies outbreaks, most recently during 2002-2010. 2. We conducted regional-scale field surveys of forest damage and recovery in 280 mountain birch stands in a northeast Norway immediately after the outbreak (2010) and six years later (2016). Satellite-derived time series of the normalized difference vegetation index (NDVI) provided an index of stand defoliation during the outbreak period. 3. The proportion of dead stems per stand displayed a bimodal distribution, with stands generally being either lightly or severely damaged. This was due to a critical threshold in the relationship between defoliation and stem mortality, with mortality rates increasing abruptly in stands experiencing a mean drop in NDVI of more than 4 % during the outbreak. The two key forest regenerative pathways – basal sprouting and sapling production – both displayed positive feedbacks with surviving stems and trees, so that regeneration success declined with increasing damage to the mature tree layer. These feedbacks imply that stands which have been forced across critical defoliation thresholds and suffered collapses of living tree cover may struggle to recover, especially if the loss of positive regenerative feedbacks is compounded by ungulate browsing on birch recruits. 4. Synthesis. The north Fennoscandian mountain birch forest displays critical thresholds and positive feedbacks that conform to theoretical expectations for a system that could be vulnerable to abrupt and persistent changes of state in the face of novel, climatically facilitated insect outbreaks. These findings deepen the understanding of the persistent losses of tree-cover that have occasionally been observed after outbreaks in this system in the past, and adds to the list of mechanisms that could help explain the bistability of tree-cover across the boreal biome

    Data from: Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest?

    No full text
    1. The boreal biome exhibits distinct alternative ecosystem states with high and low levels of tree-cover. Insect outbreaks facilitated by climate warming could potentially drive transitions from high to low tree-cover states. We investigated whether two key premises for such outbreak-induced transitions – critical thresholds (tipping points) and positive feedbacks that could maintain alternative states – are present in the northern-boreal mountain birch forest of Fennoscandia. Here, climate warming has promoted range expansions of defoliating geometrid moths, resulting in novel, severe multispecies outbreaks, most recently during 2002-2010. 2. We conducted regional-scale field surveys of forest damage and recovery in 280 mountain birch stands in a northeast Norway immediately after the outbreak (2010) and six years later (2016). Satellite-derived time series of the normalized difference vegetation index (NDVI) provided an index of stand defoliation during the outbreak period. 3. The proportion of dead stems per stand displayed a bimodal distribution, with stands generally being either lightly or severely damaged. This was due to a critical threshold in the relationship between defoliation and stem mortality, with mortality rates increasing abruptly in stands experiencing a mean drop in NDVI of more than 4 % during the outbreak. The two key forest regenerative pathways – basal sprouting and sapling production – both displayed positive feedbacks with surviving stems and trees, so that regeneration success declined with increasing damage to the mature tree layer. These feedbacks imply that stands which have been forced across critical defoliation thresholds and suffered collapses of living tree cover may struggle to recover, especially if the loss of positive regenerative feedbacks is compounded by ungulate browsing on birch recruits. 4. Synthesis. The north Fennoscandian mountain birch forest displays critical thresholds and positive feedbacks that conform to theoretical expectations for a system that could be vulnerable to abrupt and persistent changes of state in the face of novel, climatically facilitated insect outbreaks. These findings deepen the understanding of the persistent losses of tree-cover that have occasionally been observed after outbreaks in this system in the past, and adds to the list of mechanisms that could help explain the bistability of tree-cover across the boreal biome

    Data from: Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest?

    No full text
    1. The boreal biome exhibits distinct alternative ecosystem states with high and low levels of tree-cover. Insect outbreaks facilitated by climate warming could potentially drive transitions from high to low tree-cover states. We investigated whether two key premises for such outbreak-induced transitions – critical thresholds (tipping points) and positive feedbacks that could maintain alternative states – are present in the northern-boreal mountain birch forest of Fennoscandia. Here, climate warming has promoted range expansions of defoliating geometrid moths, resulting in novel, severe multispecies outbreaks, most recently during 2002-2010. 2. We conducted regional-scale field surveys of forest damage and recovery in 280 mountain birch stands in a northeast Norway immediately after the outbreak (2010) and six years later (2016). Satellite-derived time series of the normalized difference vegetation index (NDVI) provided an index of stand defoliation during the outbreak period. 3. The proportion of dead stems per stand displayed a bimodal distribution, with stands generally being either lightly or severely damaged. This was due to a critical threshold in the relationship between defoliation and stem mortality, with mortality rates increasing abruptly in stands experiencing a mean drop in NDVI of more than 4 % during the outbreak. The two key forest regenerative pathways – basal sprouting and sapling production – both displayed positive feedbacks with surviving stems and trees, so that regeneration success declined with increasing damage to the mature tree layer. These feedbacks imply that stands which have been forced across critical defoliation thresholds and suffered collapses of living tree cover may struggle to recover, especially if the loss of positive regenerative feedbacks is compounded by ungulate browsing on birch recruits. 4. Synthesis. The north Fennoscandian mountain birch forest displays critical thresholds and positive feedbacks that conform to theoretical expectations for a system that could be vulnerable to abrupt and persistent changes of state in the face of novel, climatically facilitated insect outbreaks. These findings deepen the understanding of the persistent losses of tree-cover that have occasionally been observed after outbreaks in this system in the past, and adds to the list of mechanisms that could help explain the bistability of tree-cover across the boreal biome
    corecore