92 research outputs found

    A radio air shower surface detector as an extension for IceCube and IceTop

    Full text link
    The IceCube neutrino detector is built into the Antarctic ice sheet at the South Pole to measure high energy neutrinos. For this, 4800 photomultiplier tubes (PMTs) are being deployed at depths between 1450 and 2450 meters into the ice to measure neutrino induced charged particles like muons. IceTop is a surface air shower detector consisting of 160 Cherenkov ice tanks located on top of IceCube. To extend IceTop, a radio air shower detector could be built to significantly increase the sensitivity at higher shower energies and for inclined showers. As air showers induced by cosmic rays are a major part of the muonic background in IceCube, IceTop is not only an air shower detector, but also a veto to reduce the background in IceCube. Air showers are detectable by radio signals with a radio surface detector. The major emission process is the coherent synchrotron radiation emitted by e+ e- shower particles in the Earths magnetic field (geosynchrotron effect). Simulations of the expected radio signals of air showers are shown. The sensitivity and the energy threshold of different antenna field configurations are estimated.Comment: 4 pages, 6 figures, to be published in Proceedings of the 30th International Cosmic Ray Conferenc

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping

    Full text link
    IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.Comment: 42 pages, 20 figures, submitted to Nuclear Instruments and Methods

    Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube

    Get PDF
    After the identification of the gamma-ray blazar TXS 0506+056 as the first compelling IceCube neutrino source candidate, we perform a systematic analysis of all high-energy neutrino events satisfying the IceCube realtime trigger criteria. We find one additional known gamma-ray source, the blazar GB6 J1040+0617, in spatial coincidence with a neutrino in this sample. The chance probability of this coincidence is 30% after trial correction. For the first time, we present a systematic study of the gamma-ray flux, spectral and optical variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the Fermi-LAT gamma-ray band, being in an active state around the arrival of IceCube-170922A, but in a low state during the archival IceCube neutrino flare in 2014/15. In both cases the spectral shape is statistically compatible (2σ\leq 2\sigma) with the average spectrum showing no indication of a significant relative increase of a high-energy component. While the association of GB6 J1040+0617 with the neutrino is consistent with background expectations, the source appears to be a plausible neutrino source candidate based on its energetics and multi-wavelength features, namely a bright optical flare and modestly increased gamma-ray activity. Finding one or two neutrinos originating from gamma-ray blazars in the given sample of high-energy neutrinos is consistent with previously derived limits of neutrino emission from gamma-ray blazars, indicating the sources of the majority of cosmic high-energy neutrinos remain unknown.Comment: 22 pages, 11 figures, 2 Table

    An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory

    Get PDF
    The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305,735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01\,eV2^2 and 100\,eV2^2. The best-fit point is found to be at sin2(2θ24)=0.10\sin^2(2\theta_{24})=0.10 and Δm412=4.5eV2\Delta m_{41}^2 = 4.5{\rm eV}^2, which is consistent with the no sterile neutrino hypothesis with a p-value of 8.0\%.Comment: 11 pages, 5 figures. This letter is supported by the long-form paper "Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope," also appearing on arXiv. Digital data release available at: https://github.com/icecube/HE-Sterile-8year-data-releas

    Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope

    Get PDF
    We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3+1 model, using eight years of data from the IceCube neutrino telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric νμ\nu_\mu and νˉμ\bar{\nu}_\mu events we construct confidence intervals in two analysis spaces: sin2(2θ24)\sin^2 (2\theta_{24}) vs. Δm412\Delta m^2_{41} under the conservative assumption θ34=0\theta_{34}=0; and sin2(2θ24)\sin^2(2\theta_{24}) vs. sin2(2θ34)\sin^2 (2\theta_{34}) given sufficiently large Δm412\Delta m^2_{41} that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p-value of 8\% in the first analysis space and 19\% in the second.Comment: This long-form paper is a companion to the letter "An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory". v2: update other experiments contours on results plo
    corecore