173 research outputs found

    A Preliminary Study on Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot

    Get PDF
    This paper involves the use of a compliant ankle rehabilitation robot (CARR) for the treatment of drop foot. The robot has a bio-inspired design by employing four Festo Fluidic muscles (FFMs) that mimic skeletal muscles actuating three rotational degrees of freedom (DOFs). A trajectory tracking controller was developed in joint task space to track the predefined trajectory of the end effector. This controller was achieved by controlling individual FFM length based on inverse kinematics. Three patients with drop foot participated in a preliminary study to evaluate the potential of the CARR for clinical applications. Ankle stretching exercises along ankle dorsiflexion and plantarflexion (DP) were delivered for treating drop foot. All patients gave positive feedback in using this ankle robot for the treatment of drop foot, although some limitations exist. The proposed controller showed satisfactory accuracy in trajectory tracking, with all root mean square deviation (RMSD) values no greater than 0.0335 rad and normalized root mean square deviation (NRMSD) values less than 6.7%. These preliminary findings support the potentials of the CARR for clinical applications. Future work will investigate the effectiveness of the robot for treating drop foot on a large sample of subjects

    Machine Learning Applications for Sustainable Manufacturing: A Bibliometric-based Review for Future Research

    Get PDF
    The role of data analytics is significantly important in manufacturing industries as it holds the key to address sustainability challenges and handle the large amount of data generated from different types of manufacturing operations. The present study, therefore, aims to conduct a systematic and bibliometric-based review in the applications of machine learning (ML) techniques for sustainable manufacturing (SM). In the present study, we use a bibliometric review approach that is focused on the statistical analysis of published scientific documents with an unbiased objective of the current status and future research potential of ML applications in sustainable manufacturing. The present study highlights how manufacturing industries can benefit from ML techniques when applied to address SM issues. Based on the findings, a ML-SM framework is proposed. The framework will be helpful to researchers, policymakers and practitioners to provide guidelines on the successful management of SM practices. A comprehensive and bibliometric review of opportunities for ML techniques in SM with a framework is still limited in the available literature. This study addresses the bibliometric analysis of ML applications in SM, which further adds to the originalityN/

    Digital Literacy of ELT Lecturers in Different Contexts: A Case at Two Universities in Jakarta

    Get PDF
    ICT has been implemented for language teaching in higher education since its advent. In the process, the utilization of ICT in language teaching has not comprehensively embraced for the level of digital literacies and the different context of universities. This research aims to explore the level of digital literacies at the universities and distinct context of General English (GE) teaching in two private universities in Jakarta. In this frame, the research describes the category of ICT implemented and the relevant aspects of the lecturers in both universities to teach General English. In supporting this, a triangular method of data collection is applied in the research. Technically, a questionnaire consisting of closed and open questions was distributed to lecturers from both universities. The data is analyzed qualitatively based on percentages indicator. The result revealed that the respondents have a good level of digital literacy. However, they lacked some knowledge and skills in managing the classes in an online platform. As a result, the research contributes to providing training to support them in coping with the need for teaching GE with accepted digital literacy. CCS CONCEPTS • Social and professional topics → Professional topics → Computing education → Computing literacy KEYWORDS Digital, Literacy, ELT, Lecturers, IC

    ZBTB32 restrains antibody responses to murine cytomegalovirus infections, but not other repetitive challenges

    Get PDF
    ZBTB32 is a transcription factor that is highly expressed by a subset of memory B cells and restrains the magnitude and duration of recall responses against hapten-protein conjugates. To define physiological contexts in which ZBTB32 acts, we assessed responses by Zbtb32-/- mice or bone marrow chimeras against a panel of chronic and acute challenges. Mixed bone marrow chimeras were established in which all B cells were derived from either Zbtb32-/- mice or control littermates. Chronic infection of Zbtb32-/- chimeras with murine cytomegalovirus led to nearly 20-fold higher antigen-specific IgG2b levels relative to controls by week 9 post-infection, despite similar viral loads. In contrast, IgA responses and specificities in the intestine, where memory B cells are repeatedly stimulated by commensal bacteria, were similar between Zbtb32-/- mice and control littermates. Finally, an infection and heterologous booster vaccination model revealed no role for ZBTB32 in restraining primary or recall antibody responses against influenza viruses. Thus, ZBTB32 does not limit recall responses to a number of physiological acute challenges, but does restrict antibody levels during chronic viral infections that periodically engage memory B cells. This restriction might selectively prevent recall responses against chronic infections from progressively overwhelming other antibody specificities.National Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [R01AI99109, R01AI131680, U01AI131349, K08AI04991]; New York Stem Cell FoundationOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The malleable brain: plasticity of neural circuits and behavior: A review from students to students

    Get PDF
    One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation (LTP) and long-term depression (LTD) respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by LTP and LTD, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity.Fil: Schaefer, Natascha. University of Wuerzburg; AlemaniaFil: Rotermund, Carola. University of Tuebingen; AlemaniaFil: Blumrich, Eva Maria. Universitat Bremen; AlemaniaFil: Lourenco, Mychael V.. Universidade Federal do Rio de Janeiro; BrasilFil: Joshi, Pooja. Robert Debre Hospital; FranciaFil: Hegemann, Regina U.. University of Otago; Nueva ZelandaFil: Jamwal, Sumit. ISF College of Pharmacy; IndiaFil: Ali, Nilufar. Augusta University; Estados UnidosFil: García Romero, Ezra Michelet. Universidad Veracruzana; MéxicoFil: Sharma, Sorabh. Birla Institute of Technology and Science; IndiaFil: Ghosh, Shampa. Indian Council of Medical Research; IndiaFil: Sinha, Jitendra K.. Indian Council of Medical Research; IndiaFil: Loke, Hannah. Hudson Institute of Medical Research; AustraliaFil: Jain, Vishal. Defence Institute of Physiology and Allied Sciences; IndiaFil: Lepeta, Katarzyna. Polish Academy of Sciences; ArgentinaFil: Salamian, Ahmad. Polish Academy of Sciences; ArgentinaFil: Sharma, Mahima. Polish Academy of Sciences; ArgentinaFil: Golpich, Mojtaba. University Kebangsaan Malaysia Medical Centre; MalasiaFil: Nawrotek, Katarzyna. University Of Lodz; ArgentinaFil: Paid, Ramesh K.. Indian Institute of Chemical Biology; IndiaFil: Shahidzadeh, Sheila M.. Syracuse University; Estados UnidosFil: Piermartiri, Tetsade. Universidade Federal de Santa Catarina; BrasilFil: Amini, Elham. University Kebangsaan Malaysia Medical Centre; MalasiaFil: Pastor, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Wilson, Yvette. University of Melbourne; AustraliaFil: Adeniyi, Philip A.. Afe Babalola University; NigeriaFil: Datusalia, Ashok K.. National Brain Research Centre; IndiaFil: Vafadari, Benham. Polish Academy of Sciences; ArgentinaFil: Saini, Vedangana. University of Nebraska; Estados UnidosFil: Suárez Pozos, Edna. Instituto Politécnico Nacional; MéxicoFil: Kushwah, Neetu. Defence Institute of Physiology and Allied Sciences; IndiaFil: Fontanet, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Turner, Anthony J.. University of Leeds; Reino Unid

    Exploiting genetic diversity of walnut (Juglans regia) from Jammu region of India for export related traits

    Get PDF
    The present field work was done to study the existing genetic diversity and its exploitation through identifying elite walnut (Juglans regia L.) mother trees from the large number of naturally growing seedling trees in erstwhile Doda district of Jammu region of Jammu & Kashmir state. The field work was done from 2006 to 2012. A total of 63 walnut trees were marked as elite, out of 790 trees visited at 18 locations situated at 1500m-1750m above mean sea level. Out of total collections, 49.20% samples have attractive colour influencing the consumer acceptability. Five collections (BS1207, BT1807, MR0309, MR0509 and GL0109) had kernel recovery of >50%. Wide range of variability was recorded for various nut characters being highest in kernel recovery (18.54-61.40%) with highest coefficient of variation. Nut weight was positively correlated with nut size. The total variance in first principal component was due to nut size and weight while, in second component, it was contributed by kernel recovery. Further, analysis based on export quality traits (prescribed by J&K walnut grower association) lead to the identification of 8 most promising walnut clones, viz. BS1207, PK2707, MR0309, MR0509, MR0809, GL0109, PR0309 and NZ0112. Of these, GL0109 proved best in respect of export related traits and can be developed as a good table cultivar

    Rapid Downregulation of DAB2 by Toll-Like Receptor Activation Contributes to a Pro-Inflammatory Switch in Activated Dendritic Cells

    Get PDF
    Dendritic cells (DCs) are pivotal in regulating tolerogenic as well as immunogenic responses against microorganisms by directing both the innate and adaptive immune response. In health, phenotypically different DC subsets found in the gut mucosa are maintained in their tolerogenic state but switch to a pro-inflammatory phenotype during infection or chronic autoinflammatory conditions such as inflammatory bowel disease (IBD). The mechanisms that promote the switch among the mucosal DCs from a tolerogenic to an immunogenic, pro-inflammatory phenotype are incompletely understood. We hypothesized that disabled homolog 2 (DAB2), recently described as a negative regulator of DC immunogenicity during their development, is regulated during intestinal inflammation and modulates mucosal DC function. We show that DAB2 is highly expressed in colonic CD11b+CD103− DCs, a subset known for its capacity to induce inflammatory Th1/Th17 responses in the colon, and is downregulated predominantly in this DC subset during adoptive T cell transfer colitis. Administration of Dab2-deficient DCs (DC2.4Dab2−/− cells) modulated the course of DSS colitis in wild-type mice, enhanced mucosal expression of Tnfa, Il6, and Il17a, and promoted neutrophil recruitment. In bone-marrow derived dendritic cells (BMDC), DAB2 expression correlated with CD11b levels and DAB2 was rapidly and profoundly inhibited by TLR ligands in a TRIF- and MyD88-dependent manner. The negative modulation of DAB2 was biphasic, initiated with a quick drop in DAB2 protein, followed by a sustained reduction in Dab2 mRNA. DAB2 downregulation promoted a more functional and activated DC phenotype, reduced phagocytosis, and increased CD40 expression after TLR activation. Furthermore, Dab2 knockout in DCs inhibited autophagy and promoted apoptotic cell death. Collectively, our results highlight the immunoregulatory role for DAB2 in the intestinal dendritic cells and suggest that DAB2 downregulation after microbial exposure promotes their switch to an inflammatory phenotype

    Clinical isolates of the modern Mycobacterium tuberculosis lineage 4 evade host defense in human macrophages through eluding IL-1\u3b2-induced autophagy article

    Get PDF
    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has infected over 1.7 billion people worldwide and causes 1.4 million deaths annually. Recently, genome sequence analysis has allowed the reconstruction of Mycobacterium tuberculosis complex (MTBC) evolution, with the identification of seven phylogeographic lineages: four referred to as evolutionarily "ancient", and three "modern". The MTBC strains belonging to "modern" lineages appear to show enhanced virulence that may have warranted improved transmission in humans over ancient lineages through molecular mechanisms that remain to be fully characterized. To evaluate the impact of MTBC genetic diversity on the innate immune response, we analyzed intracellular bacterial replication, inflammatory cytokine levels, and autophagy response in human primary macrophages infected with MTBC clinical isolates belonging to the ancient lineages 1 and 5, and the modern lineage 4. We show that, when compared to ancient lineage 1 and 5, MTBC strains belonging to modern lineage 4 show a higher rate of replication, associated to a significant production of proinflammatory cytokines (IL-1\u3b2, IL-6, and TNF-\u3b1) and induction of a functional autophagy process. Interestingly, we found that the increased autophagic flux observed in macrophages infected with modern MTBC is due to an autocrine activity of the proinflammatory cytokine IL-1\u3b2, since autophagosome maturation is blocked by an interleukin-1 receptor antagonist. Unexpectedly, IL-1\u3b2-induced autophagy is not disadvantageous for the survival of modern Mtb strains, which reside within Rab5-positive phagosomal vesicles and avoid autophagosome engulfment. Altogether, these results suggest that autophagy triggered by inflammatory cytokines is compatible with a high rate of intracellular bacilli replication and may therefore contribute to the increased pathogenicity of the modern MTBC lineages

    Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies.

    Get PDF
    The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved
    • …
    corecore