1,675 research outputs found

    The effects of changes in the order of verbal labels and numerical values on children's scores on attitude and rating scales

    Get PDF
    Research with adults has shown that variations in verbal labels and numerical scale values on rating scales can affect the responses given. However, few studies have been conducted with children. The study aimed to examine potential differences in children’s responses to Likert-type rating scales according to their anchor points and scale direction, and to see whether or not such differences were stable over time. 130 British children, aged 9 to 11, completed six sets of Likert-type rating scales, presented in four different ways varying the position of positive labels and numerical values. The results showed, both initially and 8-12 weeks later, that presenting a positive label or a high score on the left of a scale led to significantly higher mean scores than did the other variations. These findings indicate that different arrangements of rating scales can produce different results which has clear implications for the administration of scales with children

    How Mistimed and Unwanted Pregnancies Affect Timing of Antenatal Care Initiation in three Districts in Tanzania

    Get PDF
    Early antenatal care (ANC) initiation is a doorway to early detection and management of potential complications associated with pregnancy. Although the literature reports various factors associated with ANC initiation such as parity and age, pregnancy intentions is yet to be recognized as a possible predictor of timing of ANC initiation. Data originate from a cross-sectional household survey on health behaviour and service utilization patterns. The survey was conducted in 2011 in Rufiji, Kilombero and Ulanga districts in Tanzania on 910 women of reproductive age who had given birth in the past two years. ANC initiation was considered to be early only if it occurred in the first trimester of pregnancy gestation. A recently completed pregnancy was defined as mistimed if a woman wanted it later, and if she did not want it at all the pregnancy was termed as unwanted. Chisquare was used to test for associations and multinomial logistic regression was conducted to examine how mistimed and unwanted pregnancies affect timing of ANC initiation. Although 49.3% of the women intended to become pregnant, 50.7% (34.9% mistimed and 15.8% unwanted) became pregnant unintentionally. While ANC initiation in the 1st trimester was 18.5%, so was 71.7% and 9.9% in the 2nd and 3rd trimesters respectively. Multivariate analysis revealed that ANC initiation in the 2nd trimester was 1.68 (95% CI 1.10‒2.58) and 2.00 (95% CI 1.05‒3.82) times more likely for mistimed and unwanted pregnancies respectively compared to intended pregnancies. These estimates rose to 2.81 (95% CI 1.41‒5.59) and 4.10 (95% CI 1.68‒10.00) respectively in the 3rd trimester. We controlled for gravidity, age, education, household wealth, marital status, religion, district of residence and travel time to a health facility. Late ANC initiation is a significant maternal and child health consequence of mistimed and unwanted pregnancies in Tanzania. Women should be empowered to delay or avoid pregnancies whenever they need to do so. Appropriate counseling to women, especially those who happen to conceive unintentionally is needed to minimize the possibility of delaying ANC initiation.\u

    Ready ... Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time

    Get PDF
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the “go” signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a “countdown” condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in “no-go” conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals

    Characterization of Unique Small RNA Populations from Rice Grain

    Get PDF
    Small RNAs (∼20 to 24 nucleotides) function as naturally occurring molecules critical in developmental pathways in plants and animals [1], [2]. Here we analyze small RNA populations from mature rice grain and seedlings by pyrosequencing. Using a clustering algorithm to locate regions producing small RNAs, we classified hotspots of small RNA generation within the genome. Hotspots here are defined as 1 kb regions within which small RNAs are significantly overproduced relative to the rest of the genome. Hotspots were identified to facilitate characterization of different categories of small RNA regulatory elements. Included in the hotspots, we found known members of 23 miRNA families representing 92 genes, one trans acting siRNA (ta-siRNA) gene, novel siRNA-generating coding genes and phased siRNA generating genes. Interestingly, over 20% of the small RNA population in grain came from a single foldback structure, which generated eight phased 21-nt siRNAs. This is reminiscent of a newly arising miRNA derived from duplication of progenitor genes [3], [4]. Our results provide data identifying distinct populations of small RNAs, including phased small RNAs, in mature grain to facilitate characterization of small regulatory RNA expression in monocot species

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    A simple, high-throughput, colourimetric, field applicable loop-mediated isothermal amplification (HtLAMP) assay for malaria elimination.

    Get PDF
    BACKGROUND: To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput. METHODS: A high-throughput LAMP (HtLAMP) platform amplifying mitochondrial targets using a 96-well microtitre plate platform, processing 85 samples and 11 controls, using hydroxynaphtholblue as a colourimetric indicator was optimized for the detection of malaria parasites. Objective confirmation of visually detectable colour change results was made using a spectrophotometer. A dilution series of laboratory-cultured 3D7 Plasmodium falciparum parasites was used to determine the limit of detection of the HtLAMP assay, using P. falciparum (HtLAMP-Pf) and Plasmodium genus (HtLAMP-Pg) primers, on whole blood and filter paper, and using different DNA extraction protocols. The diagnostic accuracy of HtLAMP was validated using clinical samples from Papua New Guinea, Malaysia, Ghana and The Gambia and its field applicability was evaluated in Kota Marudu district hospital, Sabah, Malaysia. RESULTS: The HtLAMP assay proved to be a simple method generating a visually-detectable blue and purple colour change that could be objectively confirmed in a spectrophotometer at a wavelength of 600 nm. When compared with PCR, overall HtLAMP-Pg had a sensitivity of 98 % (n = 260/266, 95 % CI 95-99) and specificity 83 % (n = 15/18, 95 % CI 59-96). HtLAMP-Pf had a sensitivity of 97 % (n = 124/128, 95 % CI 92-99) and specificity of 96 % (n = 151/157, 95 % CI 92-99). A validation study in a regional hospital laboratory demonstrated ease of performance and interpretation of the HtLAMP assay. HtLAMP-Pf performed in this field setting had a sensitivity of 100 % (n = 17/17, 95 % CI 80-100) and specificity of 95 % (n = 123/128, 95 % CI 90-98) compared with multiplex PCR. HtLAMP-Pf also performed well on filter paper samples from asymptomatic Ghanaian children with a sensitivity of 88 % (n = 23/25, 95 % CI 69-97). CONCLUSION: This colourimetric HtLAMP assay holds much promise as a field applicable molecular diagnostic tool for the purpose of malaria elimination

    Ubiquitin Ligase RNF146 Regulates Tankyrase and Axin to Promote Wnt Signaling

    Get PDF
    Canonical Wnt signaling is controlled intracellularly by the level of β-catenin protein, which is dependent on Axin scaffolding of a complex that phosphorylates β-catenin to target it for ubiquitylation and proteasomal degradation. This function of Axin is counteracted through relocalization of Axin protein to the Wnt receptor complex to allow for ligand-activated Wnt signaling. AXIN1 and AXIN2 protein levels are regulated by tankyrase-mediated poly(ADP-ribosyl)ation (PARsylation), which destabilizes Axin and promotes signaling. Mechanistically, how tankyrase limits Axin protein accumulation, and how tankyrase levels and activity are regulated for this function, are currently under investigation. By RNAi screening, we identified the RNF146 RING-type ubiquitin E3 ligase as a positive regulator of Wnt signaling that operates with tankyrase to maintain low steady-state levels of Axin proteins. RNF146 also destabilizes tankyrases TNKS1 and TNKS2 proteins and, in a reciprocal relationship, tankyrase activity reduces RNF146 protein levels. We show that RNF146, tankyrase, and Axin form a protein complex, and that RNF146 mediates ubiquitylation of all three proteins to target them for proteasomal degradation. RNF146 is a cytoplasmic protein that also prevents tankyrase protein aggregation at a centrosomal location. Tankyrase auto-PARsylation and PARsylation of Axin is known to lead to proteasome-mediated degradation of these proteins, and we demonstrate that, through ubiquitylation, RNF146 mediates this process to regulate Wnt signaling

    Hybrid Models Identified a 12-Gene Signature for Lung Cancer Prognosis and Chemoresponse Prediction

    Get PDF
    Lung cancer remains the leading cause of cancer-related deaths worldwide. The recurrence rate ranges from 35-50% among early stage non-small cell lung cancer patients. To date, there is no fully-validated and clinically applied prognostic gene signature for personalized treatment.From genome-wide mRNA expression profiles generated on 256 lung adenocarcinoma patients, a 12-gene signature was identified using combinatorial gene selection methods, and a risk score algorithm was developed with Naïve Bayes. The 12-gene model generates significant patient stratification in the training cohort HLM & UM (n = 256; log-rank P = 6.96e-7) and two independent validation sets, MSK (n = 104; log-rank P = 9.88e-4) and DFCI (n = 82; log-rank P = 2.57e-4), using Kaplan-Meier analyses. This gene signature also stratifies stage I and IB lung adenocarcinoma patients into two distinct survival groups (log-rank P<0.04). The 12-gene risk score is more significant (hazard ratio = 4.19, 95% CI: [2.08, 8.46]) than other commonly used clinical factors except tumor stage (III vs. I) in multivariate Cox analyses. The 12-gene model is more accurate than previously published lung cancer gene signatures on the same datasets. Furthermore, this signature accurately predicts chemoresistance/chemosensitivity to Cisplatin, Carboplatin, Paclitaxel, Etoposide, Erlotinib, and Gefitinib in NCI-60 cancer cell lines (P<0.017). The identified 12 genes exhibit curated interactions with major lung cancer signaling hallmarks in functional pathway analysis. The expression patterns of the signature genes have been confirmed in RT-PCR analyses of independent tumor samples.The results demonstrate the clinical utility of the identified gene signature in prognostic categorization. With this 12-gene risk score algorithm, early stage patients at high risk for tumor recurrence could be identified for adjuvant chemotherapy; whereas stage I and II patients at low risk could be spared the toxic side effects of chemotherapeutic drugs
    corecore