21 research outputs found

    The worldwide C3S CORDEX grand ensemble: A major contribution to assess regional climate change in the IPCC AR6 Atlas

    Get PDF
    peer reviewedAbstract The collaboration between the Coordinated Regional Climate Downscaling Experiment (CORDEX) and the Earth System Grid Federation (ESGF) provides open access to an unprecedented ensemble of Regional Climate Model (RCM) simulations, across the 14 CORDEX continental-scale domains, with global coverage. These simulations have been used as a new line of evidence to assess regional climate projections in the latest contribution of the Working Group I (WGI) to the IPCC Sixth Assessment Report (AR6), particularly in the regional chapters and the Atlas. Here, we present the work done in the framework of the Copernicus Climate Change Service (C3S) to assemble a consistent worldwide CORDEX grand ensemble, aligned with the deadlines and activities of IPCC AR6. This work addressed the uneven and heterogeneous availability of CORDEX ESGF data by supporting publication in CORDEX domains with few archived simulations and performing quality control. It also addressed the lack of comprehensive documentation by compiling information from all contributing regional models, allowing for an informed use of data. In addition to presenting the worldwide CORDEX dataset, we assess here its consistency for precipitation and temperature by comparing climate change signals in regions with overlapping CORDEX domains, obtaining overall coincident regional climate change signals. The C3S CORDEX dataset has been used for the assessment of regional climate change in the IPCC AR6 (and for the interactive Atlas) and is available through the Copernicus Climate Data Store (CDS)

    European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP)

    No full text
    In this study, we evaluate a set of high-resolution (25–50 km horizontal grid spacing) global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP), developed as part of the EU-funded PRIMAVERA (Process-based climate simulation: Advances in high resolution modelling and European climate risk assessment) project, and from the EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment) regional climate models (RCMs) (12–50 km horizontal grid spacing) over a European domain. It is the first time that an assessment of regional climate information using ensembles of both GCMs and RCMs at similar horizontal resolutions has been possible. The focus of the evaluation is on the distribution of daily precipitation at a 50 km scale under current climate conditions. Both the GCM and RCM ensembles are evaluated against high-quality gridded observations in terms of spatial resolution and station density. We show that both ensembles outperform GCMs from the 5th Coupled Model Intercomparison Project (CMIP5), which cannot capture the regional-scale precipitation distribution properly because of their coarse resolutions. PRIMAVERA GCMs generally simulate precipitation distributions within the range of EURO-CORDEX RCMs. Both ensembles perform better in summer and autumn in most European regions but Published by Copernicus Publications on behalf of the European Geosciences Union. 5486 M.-E. Demory et al.: European daily precipitation in EURO-CORDEX RCMs and HighResMIP GCMs tend to overestimate precipitation in winter and spring. PRIMAVERA shows improvements in the latter by reducing moderate-precipitation rate biases over central and western Europe. The spatial distribution of mean precipitation is also improved in PRIMAVERA. Finally, heavy precipitation simulated by PRIMAVERA agrees better with observations in most regions and seasons, while CORDEX overestimates precipitation extremes. However, uncertainty exists in the observations due to a potential under catch error, especially during heavy-precipitation events. The analyses also confirm previous findings that, although the spatial representation of precipitation is improved, the effect of increasing resolution from 50 to 12 km horizontal grid spacing in EURO-CORDEX daily precipitation distributions is, in comparison, small in most regions and seasons outside mountainous regions and coastal regions. Our results show that both high-resolution GCMs and CORDEX RCMs provide adequate information to end users at a 50 km scal

    European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP)

    No full text
    In this study, we evaluate a set of high-resolution (25–50 km horizontal grid spacing) global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP), developed as part of the EU-funded PRIMAVERA (Process-based climate simulation: Advances in high resolution modelling and European climate risk assessment) project, and from the EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment) regional climate models (RCMs) (12–50 km horizontal grid spacing) over a European domain. It is the first time that an assessment of regional climate information using ensembles of both GCMs and RCMs at similar horizontal resolutions has been possible. The focus of the evaluation is on the distribution of daily precipitation at a 50 km scale under current climate conditions. Both the GCM and RCM ensembles are evaluated against high-quality gridded observations in terms of spatial resolution and station density. We show that both ensembles outperform GCMs from the 5th Coupled Model Intercomparison Project (CMIP5), which cannot capture the regional-scale precipitation distribution properly because of their coarse resolutions. PRIMAVERA GCMs generally simulate precipitation distributions within the range of EURO-CORDEX RCMs. Both ensembles perform better in summer and autumn in most European regions but Published by Copernicus Publications on behalf of the European Geosciences Union. 5486 M.-E. Demory et al.: European daily precipitation in EURO-CORDEX RCMs and HighResMIP GCMs tend to overestimate precipitation in winter and spring. PRIMAVERA shows improvements in the latter by reducing moderate-precipitation rate biases over central and western Europe. The spatial distribution of mean precipitation is also improved in PRIMAVERA. Finally, heavy precipitation simulated by PRIMAVERA agrees better with observations in most regions and seasons, while CORDEX overestimates precipitation extremes. However, uncertainty exists in the observations due to a potential under catch error, especially during heavy-precipitation events. The analyses also confirm previous findings that, although the spatial representation of precipitation is improved, the effect of increasing resolution from 50 to 12 km horizontal grid spacing in EURO-CORDEX daily precipitation distributions is, in comparison, small in most regions and seasons outside mountainous regions and coastal regions. Our results show that both high-resolution GCMs and CORDEX RCMs provide adequate information to end users at a 50 km scal

    Assessment of the European Climate Projections as Simulated by the Large EURO-CORDEX Regional and Global Climate Model Ensemble

    No full text
    This paper analyzes the ensemble of regional climate model (RCM) projections for Europe completed within the EURO-CORDEX project. Projections are available for the two greenhouse gas concentration scenarios RCP2.6 (22 members) and RCP8.5 (55 members) at 0.11° resolution from 11 RCMs driven by eight global climate models (GCMs). The RCM ensemble results are compared with the driving CMIP5 global models but also with a subset of available last generation CMIP6 projections. Maximum warming is projected by all ensembles in Northern Europe in winter, along with a maximum precipitation increase there; in summer, maximum warming occurs in the Mediterranean and Southern European regions associated with a maximum precipitation decrease. The CMIP6 ensemble shows the largest signals, both for temperature and precipitation, along with the largest inter-model spread. There is a high model consensus across the ensembles on an increase of extreme precipitation and drought frequency in the Mediterranean region. Extreme temperature indices show an increase of heat extremes and a decrease of cold extremes, with CMIP6 showing the highest values and EURO-CORDEX the finest spatial details. This data set of unprecedented size and quality will provide the basis for impact assessment and climate service activities for the European region

    Assessment of the European Climate Projections as Simulated by the Large EURO-CORDEX Regional and Global Climate Model Ensemble

    No full text
    International audienceThis paper analyzes the ensemble of regional climate model (RCM) projections for Europe completed within the EURO CORDEX project. Projections are available for the two greenhouse gas concentration scenarios RCP2.6 (22 members) and RCP8.5 (55 members) at 0.11° resolution from 11 RCMs driven by eight global climate models (GCMs). The RCM ensemble results are compared with the driving CMIP5 global models but also with a subset of available last generation CMIP6 projections. Maximum warming is projected by all ensembles in Northern Europe in winter, along with a maximum precipitation increase there; in summer, maximum warming occurs in the Mediterranean and Southern European regions associated with a maximum precipitation decrease. The CMIP6 ensemble shows the largest signals, both for temperature and precipitation, along with the largest inter model spread. There is a high model consensus across the ensembles on an increase of extreme precipitation and drought frequency in the Mediterranean region. Extreme temperature indices show an increase of heat extremes and a decrease of cold extremes, with CMIP6 showing the highest values and EURO CORDEX the finest spatial details. This data set of unprecedented size and quality will provide the basis for impact assessment and climate service activities for the European region

    Assessing mean climate change signals in the global CORDEX-CORE ensemble

    No full text
    The new Coordinated Output for Regional Evaluations (CORDEX-CORE) ensemble provides high-resolution, consistent regional climate change projections for the major inhabited areas of the world. It serves as a solid scientific basis for further research related to vulnerability, impact, adaptation and climate services in addition to existing CORDEX simulations. The aim of this study is to investigate and document the climate change information provided by the CORDEX-CORE simulation ensemble, as a part of the World Climate Research Programme (WCRP) CORDEX community. An overview of the annual and monthly mean climate change information in selected regions in different CORDEX domains is presented for temperature and precipitation, providing the foundation for detailed follow-up studies and applications. Initially, two regional climate models (RCMs), REMO and RegCM were used to downscale global climate model output. The driving simulations by AR5 global climate models (AR5-GCMs) were selected to cover the spread of high, medium, and low equilibrium climate sensitivity at a global scale. The CORDEX-CORE ensemble has doubled the spatial resolution compared to the previously existing CORDEX simulations in most of the regions (25[Formula: see text] (0.22[Formula: see text]) versus 50[Formula: see text] (0.44[Formula: see text])) leading to a potentially improved representation of, e.g., physical processes in the RCMs. The analysis focuses on changes in the IPCC physical climate reference regions. The results show a general reasonable representation of the spread of the temperature and precipitation climate change signals of the AR5-GCMs by the CORDEX-CORE simulations in the investigated regions in all CORDEX domains by mostly covering the AR5 interquartile range of climate change signals. The simulated CORDEX-CORE monthly climate change signals mostly follow the AR5-GCMs, although for specific regions they show a different change in the course of the year compared to the AR5-GCMs, especially for RCP8.5, which needs to be investigated further in region specific process studies

    Evaluation of the Large EURO-CORDEX Regional Climate Model Ensemble

    No full text
    International audienceThe use of regional climate model (RCM)-based projections for providing regional climate information in a research and climate service contexts is currently expanding very fast. This has been possible thanks to a considerable effort in developing comprehensive ensembles of RCM projections, especially for Europe, in the EURO-CORDEX community (Jacob et al., 2014, 2020). As of end of 2019, EURO-CORDEX has developed a set of 55 historical and scenario projections (RCP8.5) using 8 driving global climate models (GCMs) and 11 RCMs. This article presents the ensemble including its design. We target the analysis to better characterize the quality of the RCMs by providing an evaluation of these RCM simulations over a number of classical climate variables and extreme and impact-oriented indices for the period 1981-2010. For the main variables, the model simulations generally agree with observations and reanalyses. However, several systematic biases are found as well, with shared responsibilities among RCMs and GCMs: Simulations are overall too cold, too wet, and too windy compared to available observations or reanalyses. Some simulations show strong systematic biases on temperature, others on precipitation or dynamical variables, but none of the models/simulations can be defined as the best or the worst on all criteria. The article aims at supporting a proper use of these simulations within a climate services context

    Evaluation of the Large EURO-CORDEX Regional Climate Model Ensemble

    No full text
    The use of regional climate model (RCM)-based projections for providing regional climate information in a research and climate service contexts is currently expanding very fast. This has been possible thanks to a considerable effort in developing comprehensive ensembles of RCM projections, especially for Europe, in the EURO-CORDEX community (Jacob et al., 2014, 2020). As of end of 2019, EURO-CORDEX has developed a set of 55 historical and scenario projections (RCP8.5) using 8 driving global climate models (GCMs) and 11 RCMs. This article presents the ensemble including its design. We target the analysis to better characterize the quality of the RCMs by providing an evaluation of these RCM simulations over a number of classical climate variables and extreme and impact-oriented indices for the period 1981–2010. For the main variables, the model simulations generally agree with observations and reanalyses. However, several systematic biases are found as well, with shared responsibilities among RCMs and GCMs: Simulations are overall too cold, too wet, and too windy compared to available observations or reanalyses. Some simulations show strong systematic biases on temperature, others on precipitation or dynamical variables, but none of the models/simulations can be defined as the best or the worst on all criteria. The article aims at supporting a proper use of these simulations within a climate services context
    corecore