205 research outputs found

    Magnetotransport properties of a polarization-doped three-dimensional electron slab

    Full text link
    We present evidence of strong Shubnikov-de-Haas magnetoresistance oscillations in a polarization-doped degenerate three-dimensional electron slab in an Alx_{x}Ga1x_{1-x}N semiconductor system. The degenerate free carriers are generated by a novel technique by grading a polar alloy semiconductor with spatially changing polarization. Analysis of the magnetotransport data enables us to extract an effective mass of m=0.19m0m^{\star}=0.19 m_{0} and a quantum scattering time of τq=0.3ps\tau_{q}= 0.3 ps. Analysis of scattering processes helps us extract an alloy scattering parameter for the Alx_{x}Ga1x_{1-x}N material system to be V0=1.8eVV_{0}=1.8eV

    Vulnerability of indigenous health to climate change : a case study of Uganda's Batwa Pygmies

    Get PDF
    Link to published version provided.Findings stress the importance of human drivers of vulnerability and adaptive capacity and the need to address social determinants of health to reduce the potential disease burden of climate change. This study formed the basis of pilot research to inform development of a 5-year health research and intervention project. It provides summaries of climate-sensitive health outcomes identified as priority concerns, including malaria, malnutrition, respiratory disease, and stomach disorders, followed by characterization of the pathways of biophysical exposure to climate-sensitive health outcomes: water, food security, infectious disease vectors, and weather events

    Wild bird-associated Campylobacter jejuni isolates are a consistent source of human disease, in Oxfordshire, United Kingdom

    Get PDF
    The contribution of wild birds as a source of human campylobacteriosis was investigated in Oxfordshire, United Kingdom (UK) over a 10 year period. The probable origin of human Campylobacter jejuni genotypes, as described by multilocus sequence typing, was estimated by comparison with reference populations of isolates from farm animals and five wild bird families, using the STRUCTURE algorithm. Wild bird-attributed isolates accounted for between 476 (2.1%) and 543 (3.5%) cases annually. This proportion did not vary significantly by study year (P = 0.934) but varied seasonally, with wild bird-attributed genotypes comprising a greater proportion of isolates during warmer compared with cooler months (P = 0.003). The highest proportion of wild bird-attributed illness occurred in August (P < 0.001), with a significantly lower proportion in November (P = 0.018). Among genotypes attributed to specific groups of wild birds, seasonality was most apparent for Turdidae-attributed isolates, which were absent during cooler, winter months. This study is consistent with some wild bird species representing a persistent source of campylobacteriosis, and contributing a distinctive seasonal pattern to disease burden. If Oxfordshire is representative of the UK as a whole in this respect, these data suggest that the national burden of wild bird-attributed isolates could be in the order of 10,000 annually

    Release of miR-29 Target Laminin C2 Improves Skin Repair

    Get PDF
    miRNAs are small noncoding RNAs that regulate mRNA targets in a cell-specific manner. miR-29 is expressed in murine and human skin, where it may regulate functions in skin repair. Cutaneous wound healing model in miR-29a/b1 gene knockout mice was used to identify miR-29 targets in the wound matrix, where angiogenesis and maturation of provisional granulation tissue was enhanced in response to genetic deletion of miR-29. Consistently, antisense-mediated inhibition of miR-29 promoted angiogenesis in vitro by autocrine and paracrine mechanisms. These processes are likely mediated by miR-29 target mRNAs released upon removal of miR-29 to improve cell–matrix adhesion. One of these, laminin (Lam)-c2 (also known as laminin γ2), was strongly up-regulated during skin repair in the wound matrix of knockout mice. Unexpectedly, Lamc2 was deposited in the basal membrane of endothelial cells in blood vessels forming in the granulation tissue of knockout mice. New blood vessels showed punctate interactions between Lamc2 and integrin α6 (Itga6) along the length of the proto-vessels, suggesting that greater levels of Lamc2 may contribute to the adhesion of endothelial cells, thus assisting angiogenesis within the wound. These findings may be of translational relevance, as LAMC2 was deposited at the leading edge in human wounds, where it formed a basal membrane for endothelial cells and assisted neovascularization. These results suggest a link between LAMC2, improved angiogenesis, and re-epithelialization

    Guiding structures with multiply connected cross-sections: evolution of propagation in external fields at complex Robin parameters

    Full text link
    Properties of the two-dimensional ring and three-dimensional infinitely long straight hollow waveguide with unit width and inner radius ρ0\rho_0 in the superposition of the longitudinal uniform magnetic field B\bf B and Aharonov-Bohm flux are analyzed within the framework of the scalar Helmholtz equation under the assumption that the Robin boundary conditions at the inner and outer confining walls contain extrapolation lengths Λin\Lambda_{in} and Λout\Lambda_{out}, respectively, with nonzero imaginary parts. It is shown that, compared to the disk geometry, the annulus opens up additional possibilities of varying magnetization and currents by tuning imaginary components of the Robin parameters on each confining circumference; in particular, the possibility of restoring a lossless longitudinal flux by zeroing imaginary part EiE_i of the total transverse energy EE is discussed. The energy EE turns real under special correlation between the imaginary parts of Λin\Lambda_{in} and Λout\Lambda_{out} with the opposite signs what physically corresponds to the equal transverse fluxes through the inner and outer interfaces of the annulus. In the asymptotic case of the very large radius, simple expressions are derived and applied to the analysis of the dependence of the real energy EE on Λin\Lambda_{in} and Λout\Lambda_{out}. New features also emerge in the magnetic field influence; for example, if, for the quantum disk, the imaginary energy EiE_i is quenched by the strong intensities BB, then for the annulus this takes place only when the inner Robin distance Λin\Lambda_{in} is real; otherwise, it almost quadratically depends on BB with the corresponding enhancement of the reactive scattering. Closely related problem of the hole in the otherwise uniform medium is also addressed for real and complex extrapolation lengths with the emphasis on the comparative analysis with its dot counterpart.Comment: 37 pages, 9 figure

    Modern Solutions for Ancient Pathogens: Direct Pathogen Sequencing for Diagnosis of Lepromatous Leprosy and Cerebral Coenurosis.

    Get PDF
    Microbes unculturable in vitro remain diagnostically challenging, dependent historically on clinical findings, histology, or targeted molecular detection. We applied whole-genome sequencing directly from tissue to diagnose infections with mycobacteria (leprosy) and parasites (coenurosis). Direct pathogen DNA sequencing provides flexible solutions to diagnosis of difficult pathogens in diverse contexts

    Flux-Induced Vortex in Mesoscopic Superconducting Loops

    Full text link
    We predict the existence of a quantum vortex for an unusual situation. We study the order parameter in doubly connected superconducting samples embedded in a uniform magnetic field. For samples with perfect cylindrical symmetry, the order parameter has been known for long and no vortices are present in the linear regime. However, if the sample is not symmetric, there exist ranges of the field for which the order parameter vanishes along a line, parallel to the field. In many respects, the behavior of this line is qualitatively different from that of the vortices encountered in type II superconductivity. For samples with mirror symmetry, this flux-induced vortex appears at the thin side for small fluxes and at the opposite side for large fluxes. We propose direct and indirect experimental methods which could test our predictions.Comment: 6 pages, Latex, 4 figs., uses RevTex, extended to situations far from cylindrical symmetr

    A Model for the Effect of Homologous Recombination on Microbial Diversification

    Get PDF
    The effect of homologous recombination (HR) on the evolution of microbial genomes remains contentious as competing hypotheses seek to explain the evolutionary dynamics of microbial species. Evidence for HR between microbial genomes is widespread, and this process has been proposed to act as a cohesive force that can constrain the diversification of microbial lineages. We seek to characterize the evolutionary dynamics of sympatric populations to explore the impact of HR on microbial speciation. We describe a simple equation for quantifying the cohesive effect of HR on microbial populations as a function of their nucleotide divergence, μ/ρ = πg10 − 20 πg. The model was verified using a forward-time microbial population simulator that can explore the evolutionary dynamics of sympatric populations in nonoverlapping niche space. The model was also evaluated using multilocus sequence data from a range of microbial species, providing criteria for dividing them into either cohesively recombining or clonally diverging lineages. We conclude that models of microbial diversification that appear contradictory can be explained in a unified manner as the natural and predictable consequence of variation in a small number of population parameters
    corecore