40 research outputs found

    Breathing analysis using thermal and depth imaging camera video records

    Get PDF
    The paper is devoted to the study of facial region temperature changes using a simple thermal imaging camera and to the comparison of their time evolution with the pectoral area motion recorded by the MS Kinect depth sensor. The goal of this research is to propose the use of video records as alternative diagnostics of breathing disorders allowing their analysis in the home environment as well. The methods proposed include (i) specific image processing algorithms for detecting facial parts with periodic temperature changes; (ii) computational intelligence tools for analysing the associated videosequences; and (iii) digital filters and spectral estimation tools for processing the depth matrices. Machine learning applied to thermal imaging camera calibration allowed the recognition of its digital information with an accuracy close to 100% for the classification of individual temperature values. The proposed detection of breathing features was used for monitoring of physical activities by the home exercise bike. The results include a decrease of breathing temperature and its frequency after a load, with mean values −0.16°C/min and −0.72 bpm respectively, for the given set of experiments. The proposed methods verify that thermal and depth cameras can be used as additional tools for multimodal detection of breathing patterns. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.Department of Neurology, University of Pittsburg

    Bayesian modelling disentangles language versus executive control disruption in stroke

    Get PDF
    Stroke is the leading cause of long-term disability worldwide. Incurred brain damage can disrupt cognition, often with persisting deficits in language and executive capacities. Yet, despite their clinical relevance, the commonalities and differences between language versus executive control impairments remain under-specified. To fill this gap, we tailored a Bayesian hierarchical modelling solution in a largest-of-its-kind cohort (1080 patients with stroke) to deconvolve language and executive control with respect to the stroke topology. Cognitive function was assessed with a rich neuropsychological test battery including global cognitive function (tested with the Mini-Mental State Exam), language (assessed with a picture naming task), executive speech function (tested with verbal fluency tasks), executive control functions (Trail Making Test and Digit Symbol Coding Task), visuospatial functioning (Rey Complex Figure), as well as verbal learning and memory function (Soul Verbal Learning). Bayesian modelling predicted interindividual differences in eight cognitive outcome scores three months after stroke based on specific tissue lesion topologies. A multivariate factor analysis extracted four distinct cognitive factors that distinguish left- and right-hemispheric contributions to ischaemic tissue lesions. These factors were labelled according to the neuropsychological tests that had the strongest factor loadings: One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized mental flexibility, task switching and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two distinct factors that were labelled as executive speech functions and verbal memory. Impairments on both factors were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke

    Using rare genetic mutations to revisit structural brain asymmetry

    Get PDF
    Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities

    Using connectivity to investigate brain (dys)function

    No full text
    Nous nous représentons le cerveau comme un réseau complexe de régions structurellement connectées et fonctionnellement couplées. Les fonctions cognitives découlent de l'activité coordonnée de régions corticales distantes. La connectivité est utilisée pour représenter la coopération de régions cérébrales ségréguées et fonctionnellement spécialisées. Qu'il s'agisse de l'analyse des liens anatomiques, des dépendances statistiques ou des interactions causales, la connectivité révèle des aspects fondamentaux du fonctionnement (dys)cérébral. Cependant, l'estimation et l'application de la connectivité posent encore des problèmes. C'est pourquoi cette thèse est consacrée à surmonter ces défis. Le premier défi provient de l'effet néfaste du bruit systématique (comme les mouvements de la tête) sur les estimations de la connectivité. Nous avons proposé un indice qui décrit la qualité de la connectivité et qui peut refléter différents types d'artefacts, d'erreurs de traitement et de pathologie cérébrale, permettant son utilisation étendue dans le suivi de la qualité des données et les investigations méthodologiques. En outre, les altérations de la connectivité jouent un rôle inestimable dans la compréhension des dysfonctionnements cérébraux. En étudiant certains mécanismes de l'épilepsie, nous montrons que la connectivité peut suivre les changements progressifs de la susceptibilité aux crises et identifier les facteurs déterminants de la génération des crises. L'identification des moments critiques de modification de la connectivité pourrait aider à prédire avec succès les crises. Enfin, on ne comprend pas bien comment le cerveau s'adapte aux exigences des tâches cognitives à une échelle de temps rapide. Nous présentons une combinaison d'EEG intracrâniens et de mesures de pointe épileptiques pour étudier la dynamique des réseaux pendant la mémoire de reconnaissance. Il est essentiel de comprendre comment le cerveau fait face dynamiquement aux changements rapides des demandes cognitives pour comprendre les bases neurales de la cognition. En conclusion, l'objectif modeste de cette thèse est de répondre au moins partiellement à certains des nombreux défis auxquels les neurosciences actuelles sont confrontées.We picture the brain as a complex network of structurally connected regions that are functionally coupled. Brain functions arise from the coordinated activity of distant cortical regions. Connectivity is used to represent the cooperation of segregated and functionally specialized brain regions. Whether it is the analysis of anatomical links, statistical dependencies, or causal interactions, connectivity reveals fundamental aspects of brain (dys)function. However, estimating and applying connectivity still faces many challenges; therefore, this work is devoted to tackling them. The first challenge stems from the detrimental effect of systematic noise (such as head movements) on connectivity estimates. We proposed an index that depicts connectivity quality and can reflect various artifacts, processing errors, and brain pathology, allowing extensive use in data quality screening and methodological investigations. Furthermore, connectivity alterations play an invaluable role in understanding brain dysfunction. Investigating the mechanisms of epilepsy, we show that connectivity can track gradual changes of seizure susceptibility and identify driving factors of seizure generation. Identifying critical times of connectivity changes could help in successful seizure prediction. Finally, how the brain adapts to task demands on fast timescales is not well understood. We present a combination of intracranial EEG and state-of-art measures to investigate network dynamics during recognition memory. Understanding how the brain dynamically faces rapid changes in cognitive demands is vital to our comprehension of the neural basis of cognition. In conclusion, the modest goal of this thesis is to at least partially answer some of the many challenges that current neuroscience is facing

    Usage de la connectivité pour étudier les (dys)fonctions cérébrales

    Get PDF
    We picture the brain as a complex network of structurally connected regions that are functionally coupled. Brain functions arise from the coordinated activity of distant cortical regions. Connectivity is used to represent the cooperation of segregated and functionally specialized brain regions. Whether it is the analysis of anatomical links, statistical dependencies, or causal interactions, connectivity reveals fundamental aspects of brain (dys)function. However, estimating and applying connectivity still faces many challenges; therefore, this work is devoted to tackling them. The first challenge stems from the detrimental effect of systematic noise (such as head movements) on connectivity estimates. We proposed an index that depicts connectivity quality and can reflect various artifacts, processing errors, and brain pathology, allowing extensive use in data quality screening and methodological investigations. Furthermore, connectivity alterations play an invaluable role in understanding brain dysfunction. Investigating the mechanisms of epilepsy, we show that connectivity can track gradual changes of seizure susceptibility and identify driving factors of seizure generation. Identifying critical times of connectivity changes could help in successful seizure prediction. Finally, how the brain adapts to task demands on fast timescales is not well understood. We present a combination of intracranial EEG and state-of-art measures to investigate network dynamics during recognition memory. Understanding how the brain dynamically faces rapid changes in cognitive demands is vital to our comprehension of the neural basis of cognition. In conclusion, the modest goal of this thesis is to at least partially answer some of the many challenges that current neuroscience is facing.Nous nous représentons le cerveau comme un réseau complexe de régions structurellement connectées et fonctionnellement couplées. Les fonctions cognitives découlent de l'activité coordonnée de régions corticales distantes. La connectivité est utilisée pour représenter la coopération de régions cérébrales ségréguées et fonctionnellement spécialisées. Qu'il s'agisse de l'analyse des liens anatomiques, des dépendances statistiques ou des interactions causales, la connectivité révèle des aspects fondamentaux du fonctionnement (dys)cérébral. Cependant, l'estimation et l'application de la connectivité posent encore des problèmes. C'est pourquoi cette thèse est consacrée à surmonter ces défis. Le premier défi provient de l'effet néfaste du bruit systématique (comme les mouvements de la tête) sur les estimations de la connectivité. Nous avons proposé un indice qui décrit la qualité de la connectivité et qui peut refléter différents types d'artefacts, d'erreurs de traitement et de pathologie cérébrale, permettant son utilisation étendue dans le suivi de la qualité des données et les investigations méthodologiques. En outre, les altérations de la connectivité jouent un rôle inestimable dans la compréhension des dysfonctionnements cérébraux. En étudiant certains mécanismes de l'épilepsie, nous montrons que la connectivité peut suivre les changements progressifs de la susceptibilité aux crises et identifier les facteurs déterminants de la génération des crises. L'identification des moments critiques de modification de la connectivité pourrait aider à prédire avec succès les crises. Enfin, on ne comprend pas bien comment le cerveau s'adapte aux exigences des tâches cognitives à une échelle de temps rapide. Nous présentons une combinaison d'EEG intracrâniens et de mesures de pointe épileptiques pour étudier la dynamique des réseaux pendant la mémoire de reconnaissance. Il est essentiel de comprendre comment le cerveau fait face dynamiquement aux changements rapides des demandes cognitives pour comprendre les bases neurales de la cognition. En conclusion, l'objectif modeste de cette thèse est de répondre au moins partiellement à certains des nombreux défis auxquels les neurosciences actuelles sont confrontées

    Non-Linear EEG Measures in Meditation

    No full text

    Resting-state fMRI of patients with multiple sclerosis and healthy controls

    No full text
    Resting-state fMRI of patients with multiple sclerosis and healthy control
    corecore