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Abstract: The paper is devoted to the study of facial region temperature changes using a simple
thermal imaging camera and to the comparison of their time evolution with the pectoral area motion
recorded by the MS Kinect depth sensor. The goal of this research is to propose the use of video records
as alternative diagnostics of breathing disorders allowing their analysis in the home environment as
well. The methods proposed include (i) specific image processing algorithms for detecting facial parts
with periodic temperature changes; (ii) computational intelligence tools for analysing the associated
videosequences; and (iii) digital filters and spectral estimation tools for processing the depth matrices.
Machine learning applied to thermal imaging camera calibration allowed the recognition of its digital
information with an accuracy close to 100% for the classification of individual temperature values.
The proposed detection of breathing features was used for monitoring of physical activities by the
home exercise bike. The results include a decrease of breathing temperature and its frequency after a
load, with mean values −0.16 ◦C/min and −0.72 bpm respectively, for the given set of experiments.
The proposed methods verify that thermal and depth cameras can be used as additional tools for
multimodal detection of breathing patterns.

Keywords: thermography; machine learning; facial temperature distribution; depth sensors;
multimodal signals; breathing disorders detection

1. Introduction

The use of different sensors is essential for the study of many physiological and mental activities,
neurological diseases [1,2] and motion and gait disorders [3,4]. The explanation of biomedical signals
is also important for the development of assisted living technologies [5] and specific studies are related
to polysomnography [6] and the study of many signals, including breathing and motion, as well as
EEG and ECG signals.

Special attention is paid to temperature changes of facial parts affected by emotions,
mental activities, or neurological disorders. The study of the temperature distribution over different
parts of the face can be used in face and emotion detection [7–12], age recognition [13], motion [14],
psychophysiology [15,16], neurology [17], and stress detection [18,19].

Noninvasive methods of breathing monitoring include electrical impedance tomography,
respiratory inductance plethysmography [20,21], capnography and measurement of the tracheal sound,
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air capacity of the lungs or thoracic and abdominal circumference changes during respiration [22,23].
Thermal imaging can be used to measure both breathing rate and exhaled air temperature to provide
useful information about the body load during physical activity and to study potential symptoms of
certain respiratory diseases [24].

The respiratory rate is an important indicator [25] for monitoring of a person’s health.
Some studies are devoted to sensing technologies in smart cities [26] that follow people’s vital signs
without body instrumentation. These systems are often used for diagnosis of neurological disorders as
well. A specific research is devoted to the respiration affect to cortical neuronal activity that modulates
sensory, motor, emotional and cognitive processes [27].

The present paper is devoted to the noninvasive analysis of the breathing rate by facial
temperature distribution using a thermal imaging camera [28,29] and by thorax movement monitoring
recorded by the MS Kinect depth sensor. Data obtained from these instruments are then used for
multimodal breathing analysis [30] and for monitoring of physical activities. Both the sequences of the
thermal images and the depth matrices are acquired on the basis of contactless measurement.

A special attention is paid to the adaptive detection of facial thermographic regions. The present
paper applies specific methods for their recognition allowing to detect the breathing rate or to recognize
facial neurological disorders.

The proposed method of respiratory data processing is based on their statistical and numerical
analysis using different functional transforms for the fast and robust estimation of desired features [20,23].
The respiratory rate estimation using chest motion analysis and facial thermographic data includes
application of digital filtering and spectral analysis as well.

2. Methods

2.1. Data Acquisition

Figure 1 presents the general principle of the use of the thermal imaging camera [31] to detect
temperature changes in the mouth area for the analysis of breathing. The calibration bar associated
with each video frame is presented in the upper part of Figure 1a, showing the temperatures and
associated image grey levels. Figure 1a presents the fixed ROI and the current position of the moving
ROI as well. The recorded videosequence of temperature changes can then be used to analyse the time
evolution of the temperature in the selected region of interest (ROI).
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Moving ROI
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Figure 1. Data acquisition presenting (a) specification of the fixed and moving region of interest (ROI);
(b) facial regions of different mean temperatures in the selected thermal image frame.

The block diagram of the thermal imaging camera shown in Figure 2a presents its optical systems,
radiation detector, and electronics for processing and presenting images. The lens projects thermal
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radiation to the radiation detector, which measures its intensity. This information is then digitized and
transferred to the resulting thermogram. The basic parameters of the SEEK Compact thermal camera
used in this study and listed in Table 1 include its optical resolution and temperature range. The sensor
responds to long-wave infrared radiation with wavelengths between 7.5 and 14 µm.

Figure 2. Thermal image analysis presenting (a) the block diagram of the thermal camera;
(b) a selected image frame of a compact surface with equal temperature values; and (c) the distribution
of values recorded by individual pixels.

Table 1. Basic parameters of the thermal camera and MS Kinect sensors used for breathing analysis.

Thermo Camera Specifications MS Kinect Specifications

Feature Description Feature Description

Thermal sensor resolution 206× 156 RGB stream resolution 1920× 1080
Detection distance 300 m Depth stream resolution 512× 424
Temperature range −40–330 ◦C Infrared stream resolution 512× 424
Frame rate <9 Hz Depth range 0.4–4 m
Microbolometer Vanadium Oxide Frame rate <30 Hz
Lens material Chalcogenide
Pixel pitch 12 µm
Spectral range 7.5–14 µm

An alternative approach to breathing data acquisition using an MS Kinect depth sensor is
presented in Figure 3. For the selected thorax area, the depth sensing camera evaluates a matrix
whose values indicate the distances of the individual pixels from the depth sensor. A videosequence of
such frames can be used to determine the time evolution of chest movements in selected regions.
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Figure 3. Principle of data acquisition by an MS Kinect depth sensor, presenting a selected depth frame
with the regions of interest used to detect the chest movement.
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The range imaging methods used in depth sensors are based on the specific computational
technologies that create the matrices whose elements carrying the information about the distance of the
corresponding image component from the sensor [32,33]. The device features a sensor that is capable
of capturing depth maps using the ‘Time of Flight’ technology [34]. The basic parameters of the MS
Kinect used in this study are summarized in Table 1 as well.

2.2. Data Processing

The sequence of images recorded by the thermal camera were acquired with the changing temperature
ranges associated with each videoframe as presented in Figure 1a. The adaptive recognition of these
temperature ranges was performed by the two-layer neural network with the sigmoidal and softmax transfer
functions [3] trained to recognize individual digits with the accuracy close to 100%. The classification model
is able to detect the minimal and maximal temperature values in each thermographic frame and associated
grey levels for the determination of the temperatures in each image.

The accuracy of the thermal camera was tested for a flat surface with equal temperature values
and analysis of individual image frames as presented in Figure 2b,c. For applications requiring accurate
temperature values the comparison with the calibrated thermometer is presented as well.

Facial temperature values are useful for detection of neurological disorders and facial symmetry
analysis. The time stability and precision of the thermal camera was tested for a sequence of images
recorded with a sampling period of 5 s in the face area with a stable temperature distribution over
a short period of time for a healthy individual. The area around the eyes illustrated in Figure 4a
was selected and the area of the regions in the selected temperature range of 26–28 ◦C presented in
Figure 4c was analysed. The results in Figure 4d,e enjoy a precision better than 7% related to the mean
temperature, which is sufficient for the given case.
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Figure 4. Thermal imaging camera accuracy analysis presenting (a) a selected thermal image with the
region of interest (ROI) and the temperature bar; (b) areas specifying subregions with temperatures in
the range of 26 ◦C and 28 ◦C; (c) the ROI temperature surface plot; (d) a global analysis of percentage of
thermal pixels in the selected range of 26 ◦C and 28 ◦C; and (e) percentage values of thermal pixels in
the selected range of 26 ◦C and 28 ◦C detected in two selected areas and their evolution for 24 images
recorded for two minutes with a sampling period of 5 s.

The area (ROI) for the time evolution of temperature changes was specified empirically according
to the first frame at first, as presented in Figure 5a. This fixed area assumed that the face maintained a
stable position during the observation. To allow more flexible observations, the proposed algorithm
includes the automatic detection of the area of interest using the following steps:
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1. videorecording of the face area during a selected time range,
2. extraction of thermographic frames with the selected sampling frequency (of 10 Hz) and a

given resolution,
3. automatic determination of temperature ranges in each thermographic frame and the adaptive

calibration of each thermal image,
4. detection of the mouth area using the selected number of initial frames with the largest

temperature changes and the adaptive update of this ROI for each subsequent thermal image,
5. evaluation of the mean temperature in the specified window of a changing position and size in

each frame.
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Figure 5. Principle of the use of the thermal imaging camera for breathing analysis, presenting the
time evolution of the mean breathing temperature detected in the selected mouth region (a) during the
physical exercise with the higher temperature and breathing frequency; (b) during the restful period
with the lower temperature and breathing frequency.

An example of the time evolution of the mean breathing temperature in the selected mouth region
is presented in Figure 1a. The mean temperature in each video frame is associated with the grey level
and the dot size in each time instant is in relation to the currently determined size of the mouth area.

An alternative analysis of breathing based upon thorax movement [1] was based on the mean
value of the distance of the selected chest region from a MS Kinect depth sensor.

The analysis of multimodal records {x(n)}N−1
n=0 of breathing obtained from the thermal imaging

camera and depth sensors used similar signal processing methods. Their de-noising was performed by
finite impulse response (FIR) filtering of a selected order, M, resulting in a new sequence {y(n)}N−1

n=0
using the relation

y(n) =
M−1

∑
k=0

b(k) x(n− k) (1)

with coefficients {b(k)}M−1
k=0 defined to form a filter of the selected type and cutoff frequencies. In the

case of breathing signals, a band pass filter was used to extract the frequency components in the range
of 〈0.05, 1.5〉 Hz.

The spectral components were then calculated by the discrete Fourier transform forming
the sequence

Y(k) =
N−1

∑
n=0

y(n) exp(−j k n
2 π

N
) (2)
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for k = 0, 1, · · · , N−1 related to the frequency fk = k
N × fs. For selected records 300 s long and a

sampling frequency of fs = 10 Hz, resulting in each record being N = 3000 samples long, the frequency
resolution was 1/N × fs = 0.0033 Hz, which is sufficient for the given study.

3. Results

The detection of breathing features was verified during monitoring of physical activities by the
home exercise bike. Each experiment was 40 min long and it included two periods of physical exercises
followed by two restful periods with each of them 10 min long. The total number of 25 experiments
was performed by one individual in similar home conditions.

Figure 5 presents the results of the adaptive detection of the mouth area and the evolution of the
mean breathing temperature in the selected time range of 30 s with a sampling frequency of 10 Hz.
The adaptive recognition of the temperature range in each frame is applied in this process as well.

The resulting mean temperatures recorded by the thermal imaging camera evaluated from the fixed and
the adaptively specified and moving temperature regions of interest are presented in Figure 6a. The moving
ROI assumes its detection from temperature changes recorded during the selected number of previous
frames. The history between 1 and 8 s long was selected (presented by the green vertical line in Figure 6a).
As a result of the adaptive algorithm, the range of temperatures recorded by the moving ROI is larger,
owing to the more precisely defined area of temperature changes following a possible slow movement
of the head. The mean value of the distance of the chest area from the MS Kinect sensor recorded
simultaneously is presented in Figure 6a as well.

Figure 6b presents the comparison of the breathing frequencies estimated from the spectral
components evaluated for signals recorded both by the thermal imaging camera (using the fixed and
moving ROI) and the MS Kinect depth sensor. All frequencies detected by this algorithm are the same
for the given frequency resolution.
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Figure 6. Data processing presenting (a) signals recorded by the thermal imaging camera and the MS
Kinect depth sensor; and (b) detection of the breathing frequency from the fixed ROI, the moving ROI,
and the MS Kinect depth sensor.

Table 2 presents the results of mean temperatures and temperature ranges evaluated in the
fixed region of interest selected for the thermal imaging camera video records, as well as the
adaptively changing positions and areas of this region evaluated by the proposed method. Table 2
presents further estimated breathing frequencies using the thermal imaging camera records. Since the
records are 300 s long and the frame frequency is 10 Hz, all results are accurate within a frequency
resolution of 0.0033 Hz (0.2 bpm). The same frequency was evaluated by the MS Kinect depth sensor
which moreover provides information about thoracic and abdominal motion [1] during respiration.



Sensors 2017, 17, 1408 7 of 10

Table 2. Mean temperatures (T), temperature ranges (R) and evaluated breathing frequencies (F) for
fixed and changing regions of interest using thermal imaging camera records 5 min long acquired in
the same restful periods of different physical tests.

Test Fixed ROI Moving ROI

T (◦C) R (◦C) F (bpm) T (◦C) R (◦C) F (bpm)

1 26.49 3.49 14.79 27.19 10.07 14.79
2 26.26 3.17 15.61 27.02 9.12 15.61
3 26.79 5.66 15.41 27.09 10.61 15.41
4 27.33 4.31 15.82 27.47 11.38 15.82
5 26.14 4.00 16.23 26.95 9.44 16.23
6 27.55 4.20 14.58 27.32 9.07 14.58
7 27.54 4.13 16.64 27.40 9.98 16.64

Both thermal imaging and motion data can be used for monitoring of the breathing rate during
physical activity. The proposed method of adaptive specification of the breathing area and temperature
range recognition was applied for the analysis of the evolution of the breathing features recorded during
physical exercise and in the following resting time period. Figure 7 presents the breathing temperatures
recorded by the thermal imaging camera in the selected time range and the corresponding evolution of
mean temperatures and breathing frequency evaluated in time windows 60 s long. Figure 7a presents
the evolution of mean temperatures in the fixed and moving mouth area showing wider temperature
ranges for the moving ROI (specified in Table 2). The moving ROI position results in more robust
detection of temperature changes allowing to follow motion of the head. Regression coefficients for
the set of exercises 30 min long performed at room temperature and evaluated for the subsequent
restful period of 7 min are summarized in Table 3. The resulting mean regression coefficients are
−0.16 ◦C/min. and −0.72 bpm in the given case. These results correspond with the physiological
explanation of breathing changes.
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Figure 7. An example of records and results evaluated during two 10 min long segments of the
physical exercises followed by two 10 min long resting time periods presenting (a) the time evolution
of breathing temperatures; (b) the time evolution of the mean breathing temperature in a time
window 60 s long; and (c) associated breathing frequency.
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Table 3. Regression coefficients and the mean squared errors S of the temperature and breathing
frequency decrease during the time period of 7 min after the physical exercise 30 min long recorded by
the thermal image camera.

Temperature Evolution Frequency Evolution

Experiment Reg. Coeff. S Aver. Reg. Coeff. Reg. Coeff. S Aver. Reg. Coeff.

[◦C/min] [%] Mean STD [bpm] [%] Mean STD

1 −0.252 0.001 −0.513 0.401
2 −0.182 0.001 −1.571 0.476
3 −0.135 0.001 −0.162 0.059 −0.250 0.055 −0.720 0.619
4 −0.092 0.003 −0.117 0.508
5 −0.148 0.001 −1.150 0.358

Table 4 presents mean delays of frequency and temperature changes related to the start of the
physical exercise or restful period evaluated for 32 segments 10 min long. An example of a selected
test is presented in Figure 7. Physiological needs cause faster change of the breathing frequency at
the beginning of the physical activity. This increase of the air flow volume causes on the other hand
a longer period of breath temperature change during segments with the physical exercise. Results
of the delay of selected physiological functions related to changes of physical activities for cycling
experiments [35] correspond to the tests specified above.

Table 4. Mean delays of frequency and temperature changes related to the change of physical activity
(physical exercise or restful period) for the set of 32 records 10 min long.

Breathing Feature Segment Mean Deleay (s) STD

Frequency Load 76 17

Rest 98 47

Temperature Load 188 59

Rest 130 34

4. Conclusions

This paper proposes a method for the use of thermal and depth sensors to detect breathing
features. The presentation includes a description of a machine learning method for the recognition of
the temperature ranges as well as an adaptive specification of the mouth region using the sequence
of thermographic images. The application is devoted to the study of selected physiological features
evaluated during physical activities.

The results achieved show an example of simple sensors application for breathing analysis using
simple thermal imaging cameras for the detection of temperature changes and MS Kinect depth sensors
for the analysis of the motion in the chest area. The proposed method of thermographic regions detection
allows both analysis of the breathing rate and the study of neurological problems in the facial area.

It is assumed that simple sensors can form an alternative tool for the detection of medical disorders,
including sleep and breathing analysis in the home environment.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/6/1408/
s1, S1: A video record of a selected set of thermal images showing the fixed and moving ROIs with facial regions of
different mean temperatures and S2: a video record of selected depth frames acquired in the selected thorax area.
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