1,271 research outputs found
Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets
We analyze both analytically and numerically the resonant four-wave mixing of
two co-propagating single-photon wave packets. We present analytic expressions
for the two-photon wave function and show that soliton-type quantum solutions
exist which display a shape-preserving oscillatory exchange of excitations
between the modes. Potential applications including quantum information
processing are discussed.Comment: 7 pages, 3 figure
Chapter 10 - Detection and attribution of climate change: From global to regional
This chapter assesses the causes of observed changes assessed in Chapters 2 to 5 and uses understanding of physical processes, climate models and statistical approaches. The chapter adopts the terminology for detection and attribution proposed by the IPCC good practice guidance paper on detection and attribution (Hegerl et al., 2010) and for uncertainty Mastrandrea et al. (2011). Detection and attribution of impacts of climate changes are assessed by Working Group II, where Chapter 18 assesses the extent to which atmospheric and oceanic changes influence ecosystems, infrastructure, human health and activities in economic sectors
BINGO: A code for the efficient computation of the scalar bi-spectrum
We present a new and accurate Fortran code, the BI-spectra and
Non-Gaussianity Operator (BINGO), for the efficient numerical computation of
the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field
inflationary models involving the canonical scalar field. The code can
calculate all the different contributions to the bi-spectrum and the parameter
f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing
firstly on the equilateral limit, we illustrate the accuracy of BINGO by
comparing the results from the code with the spectral dependence of the
bi-spectrum expected in power law inflation. Then, considering an arbitrary
triangular configuration, we contrast the numerical results with the analytical
expression available in the slow roll limit, for, say, the case of the
conventional quadratic potential. Considering a non-trivial scenario involving
deviations from slow roll, we compare the results from the code with the
analytical results that have recently been obtained in the case of the
Starobinsky model in the equilateral limit. As an immediate application, we
utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL}
to discriminate between various inflationary models that admit departures from
slow roll and lead to similar features in the scalar power spectrum. We close
with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed,
extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO
code is available online at
http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm
The Supersymmetric Standard Models with Decay and Stable Dark Matters
We propose two supersymmetric Standard Models (SMs) with decaying and stable
dark matter (DM) particles. To explain the SM fermion masses and mixings and
have a heavy decay DM particle S, we consider the Froggatt-Nielsen mechanism by
introducing an anomalous U(1)_X gauge symmetry. Around the string scale, the
U(1)_X gauge symmetry is broken down to a Z_2 symmetry under which S is odd
while all the SM particles are even. S obtains a vacuum expectation value
around the TeV scale, and then it can three-body decay dominantly to the
second/third family of the SM leptons in Model I and to the first family of the
SM leptons in Model II. Choosing a benchmark point in the constrained minimal
supersymmetric SM with exact R parity, we show that the lightest neutralino DM
is consistent with the CDMS II experiment. Considering S three-body decay and
choosing suitable parameters, we show that the PAMELA and Fermi-LAT experiments
and the PAMELA and ATIC experiments can be explained in Model I and Model II,
respectively.Comment: RevTex4, 26 pages, 6 figures, references added, version to appear in
EPJ
Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance
We have made a first measurement of the lepton momentum spectrum in a sample
of events enriched in neutral B's through a partial reconstruction of B0 -->
D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the
Upsilon(4S) resonance by the CLEO II detector, is compared directly to the
inclusive lepton spectrum from all Upsilon(4S) events in the same data set.
These two spectra are consistent with having the same shape above 1.5 GeV/c.
From the two spectra and two other CLEO measurements, we obtain the B0 and B+
semileptonic branching fractions, b0 and b+, their ratio, and the production
ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950
(+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57
+- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes,
tau+/tau0.Comment: 14 page, postscript file also available at
http://w4.lns.cornell.edu/public/CLN
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
Radiative Decay Modes of the Meson
Using data recorded by the CLEO-II detector at CESR we have searched for four
radiative decay modes of the meson: ,
, , and . We
obtain 90% CL upper limits on the branching ratios of these modes of , , and
respectively.Comment: 15 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
- …