118 research outputs found

    Design of CNN architecture for Hindi Characters

    Get PDF
    Handwritten character recognition is a challenging problem which received attention because of its potential benefits in real-life applications. It automates manual paper work, thus saving both time and money, but due to low recognition accuracy it is not yet practically possible. This work achieves higher recognition rates for handwritten isolated characters using Deep learning based Convolutional neural network (CNN). The architecture of these networks is complex and plays important role in success of character recognizer, thus this work experiments on different CNN architectures, investigates different optimization algorithms and trainable parameters. The experiments are conducted on two different types of grayscale datasets to make this work more generic and robust. One of the CNN architecture in combination with adadelta optimization achieved a recognition rate of 97.95%. The experimental results demonstrate that CNN based end-to-end learning achieves recognition rates much better than the traditional techniques

    Gender-Associated Oral and Periodontal Health Based on Retrospective Panoramic Radiographic Analysis of Alveolar Bone Loss

    Get PDF
    Gender-based heterogeneity in periodontal disease has been witnessed in the recent past with huge mounting evidence. The composite effect of sex-based genetic structure and the sex steroid hormones runs in line with the corresponding gender-related differences in risk for chronic periodontitis. Since estrogens, the predominant sex hormones in women, show immune protective and anti-inflammatory effects in hormonally active premenopausal women, they show better periodontal status compared to age-matched men. Conversely, after menopause with a weakening estrogen signal, women may show an equal or even more serious periodontal status compared to men. Periodontal status of postmenopausal women may be improved by menopausal hormone therapy. Alveolar bone loss, an irreversible sign of past periodontal disease activity can be easily observed on radiographs in an objective manner. Orthopantomographs provide a fairly accurate assessment of the status of alveolar bone in the whole mouth. A cross-sectional retrospective panoramic radiographic analysis has been carried out in a north Indian dental institute to decipher the gender-based distribution of periodontal bone loss. The current chapter shall provide an update on gender-based differences in oral health, underlying mechanisms, differences in patterns and distribution of alveolar bone loss (case study), and potential gender-specific disease protection and management strategies

    Literature Review of Omicron: A Grim Reality Amidst COVID-19

    Get PDF
    Coronavirus disease 2019 (COVID-19) first emerged in Wuhan city in December 2019, and became a grave global concern due to its highly infectious nature. The Severe Acute Respiratory Coronavirus-2, with its predecessors (i.e., MERS-CoV and SARS-CoV) belong to the family of Coronaviridae. Reportedly, COVID-19 has infected 344,710,576 people around the globe and killed nearly 5,598,511 persons in the short span of two years. On November 24, 2021, B.1.1.529 strain, later named Omicron, was classified as a Variant of Concern (VOC). SARS-CoV-2 has continuously undergone a series of unprecedented mutations and evolved to exhibit varying characteristics. These mutations have largely occurred in the spike (S) protein (site for antibody binding), which attribute high infectivity and transmissibility characteristics to the Omicron strain. Although many studies have attempted to understand this new challenge in the COVID-19 strains race, there is still a lot to be demystified. Therefore, the purpose of this review was to summarize the structural or virologic characteristics, burden, and epidemiology of the Omicron variant and its potential to evade the immune response

    Modulation of morphology and efficacy of new CB1 receptor antagonist using simple and benign polymeric additives

    Get PDF
    The compound 1, [(1H-[1]benzoxepino[5,4-c]pyrazole-3-carboxamide, 8-chloro-1-(2,4-dichlorophenyl)-4,5-dihydro-N-1-piperidinyl], a known CB1 modulator has been synthesized and characterized by IR, NMR and single Crystal X-ray study. The single crystal study of 1 displays a number of halogen bonds leading to 1-D network along with other weak non-covalent interactions. The CB1 modulator 1 inherently possesses extremely low solubility in water, which makes its application as drug difficult, and this may be attributed to multiple halogen bonds present in the crystal structure. A series of polymer additives, which are Generally Regarded As Safe (GRAS), have been explored to investigate whether they can modulate the halogen bond present in 1 through formation of various non-bonded interactions. Surprisingly, these polymers are found to change crystal morphology, crystal packing while retaining efficacy and bioavailability. The polymer molecular weight is found to play a significant role in crystal morphology modification especially in case of polyethylene glycol (PEG). The formation of new polymorphic forms of 1 and modification of halogen bond has been established using powder X-ray diffraction and IR study, respectively, in case of PEG 4000, PVPK-30, PVA polymers and compound 1 adducts.

    Modulation of morphology and efficacy of new CB1 receptor antagonist using simple and benign polymeric additives

    Get PDF
    1014-1021The compound 1, [(1H-[1]benzoxepino[5,4-c]pyrazole-3-carboxamide, 8-chloro-1-(2,4-dichlorophenyl)-4,5-dihydro-N- 1-piperidinyl], a known CB1 modulator has been synthesized and characterized by IR, NMR and single Crystal X-ray study. The single crystal study of 1 displays a number of halogen bonds leading to 1-D network along with other weak noncovalent interactions. The CB1 modulator 1 inherently possesses extremely low solubility in water, which makes its application as drug difficult, and this may be attributed to multiple halogen bonds present in the crystal structure. A series of polymer additives, which are Generally Regarded As Safe (GRAS), have been explored to investigate whether they can modulate the halogen bond present in 1 through formation of various non-bonded interactions. Surprisingly, these polymers are found to change crystal morphology, crystal packing while retaining efficacy and bioavailability. The polymer molecular weight is found to play a significant role in crystal morphology modification especially in case of polyethylene glycol (PEG). The formation of new polymorphic forms of 1 and modification of halogen bond has been established using powder X-ray diffraction and IR study, respectively, in case of PEG 4000, PVPK-30, PVA polymers and compound 1 adducts

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

    Full text link
    We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from 108-10^{-8} to 10910^{-9} Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0h_0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are 1.1×1025{\sim}1.1\times10^{-25} at 95\% confidence-level. The minimum upper limit of 1.10×10251.10\times10^{-25} is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.Comment: 23 main text pages, 17 figure
    corecore