782 research outputs found

    Simulation of the Directional Dark Matter Detector (D3) and Directional Neutron Observer (DiNO)

    Full text link
    Preliminary simulation and optimization studies of the Directional Dark Matter Detector and the Directional Neutron Observer are presented. These studies show that the neutron interaction with the gas-target in these detectors is treated correctly by GEANT4 and that by lowering the pressure, the sensitivity to low-mass WIMP candidates is increased. The use of negative ion drift might allow us to search the WIMP mass region suggested by the results of the non-directional experiments DAMA/LIBRA, CoGeNT and CRESST-II.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products

    Get PDF
    We evaluate monoterpene-derived peroxy radical (MT-RO2) unimolecular autoxidation and self- and cross-reactions with other RO2 species in the GEOS-Chem global chemical transport model. The formation of associated highly oxygenated organic molecules (HOMs) and accretion products are tracked in competition with other bimolecular reactions. Autoxidation is the dominant fate up to 6-8 km for first-generation MT-RO2, which can undergo unimolecular H shifts. Reaction with NO can be a more common fate for H-shift rate constants < 0.1 s(-1) or at altitudes higher than 8 km due to the imposed Arrhenius temperature dependence of unimolecular H shifts. For MT-derived HOM-RO2, generated by multistep autoxidation of first-generation MT-RO2, reaction with other RO2 species is predicted to be the major fate throughout most of the boreal and tropical forest regions, whereas reaction with NO dominates in the temperate and subtropical forests of the Northern Hemisphere. The newly added reactions result in an approximate 4 % global average decrease in HO2 and RO2, mainly due to faster self-/cross-reactions of MT-RO2, but the impact upon HO2, OH, and NOx abundances is only important in the planetary boundary layer (PBL) over portions of tropical forests. Predicted HOM concentrations in MT-rich regions and seasons can exceed total organic aerosol predicted by the standard version of the GEOS-Chem model depending on the parameters used. Comparisons to observations reveal that large uncertainties remain for key reaction parameters and processes, especially with respect to the photochemical lifetime and volatility of HOMs as well as the rates and branching of associated RO2 accretion products. Further observations and laboratory studies related to MT-RO2-derived HOMs and gas-phase RO2 accretion product formation kinetics - especially their atmospheric fate, such as gas-particle partitioning, multiphase chemistry, and net secondary organic aerosol formation - are needed.Peer reviewe

    The Directional Dark Matter Detector

    Full text link
    Gas-filled Time Projection Chambers (TPCs) with Gas Electron Multipliers (GEMs) and pixels appear suitable for direction-sensitive WIMP dark matter searches. We present the background and motivation for our work on this technology, past and ongoing prototype work, and a development path towards an affordable, 1-m3\rm m^3-scale directional dark matter detector, \dcube. Such a detector may be particularly suitable for low-mass WIMP searches, and perhaps sufficiently sensitive to clearly determine whether the signals seen by DAMA, CoGeNT, and CRESST-II are due to low-mass WIMPs or background.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    Primakoff effect in eta-photoproduction off protons

    Get PDF
    We analyse data on forward eta-meson photoproduction off a proton target and extract the eta to gamma gamma decay width utilizing the Primakoff effect. The hadronic amplitude that enters into our analysis is strongly constrained because it is fixed from a global fit to available gamma p to p eta data for differential cross sections and polarizations. We compare our results with present information on the two-photon eta-decay from the literature. We provide predictions for future PrimEx experiments at Jefferson Laboratory in order to motivate further studies.Comment: 5 pages, 6 figures, gamma-gamma*-eta form factor included, version to appear in Eur. Phys. J. A

    Quasi-free photoproduction of η-mesons off 3He nuclei

    Get PDF
    Quasi-free photoproduction of η-mesons has been measured off nucleons bound in 3He nuclei for incident photon energies from the threshold region up to 1.4 GeV. The experiment was performed at the tagged photon facility of the Mainz MAMI accelerator with an almost 4π covering electromagnetic calorimeter, combining the TAPS and Crystal Ball detectors. The η-mesons were detected in coincidence with the recoil nucleons. This allowed a comparison of the production cross section off quasi-free protons and quasi-free neutrons and a full kinematic reconstruction of the final state, eliminating effects from nuclear Fermi motion. In the S11(1535) resonance peak, the data agree with the neutron/proton cross section ratio extracted from measurements with deuteron targets. More importantly, the prominent structure observed in photoproduction off quasi-free neutrons bound in the deuteron is also clearly observed. Its parameters (width, strength) are consistent with the expectations from the deuteron results. On an absolute scale the cross sections for both quasi-free protons and neutrons are suppressed with respect to the deuteron target pointing to significant nuclear final-state interaction effects

    Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER

    Get PDF
    Most intensive field studies investigating aerosols have been conducted in summer, and thus, wintertime aerosol sources and chemistry are comparatively poorly understood. An aerosol mass spectrometer was flown on the National Science Foundation/National Center for Atmospheric Research C‐130 during the Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) 2015 campaign in the northeast United States. The fraction of boundary layer submicron aerosol that was organic aerosol (OA) was about a factor of 2 smaller than during a 2011 summertime study in a similar region. However, the OA measured in WINTER was almost as oxidized as OA measured in several other studies in warmer months of the year. Fifty‐eight percent of the OA was oxygenated (secondary), and 42% was primary (POA). Biomass burning OA (likely from residential heating) was ubiquitous and accounted for 33% of the OA mass. Using nonvolatile POA, one of two default secondary OA (SOA) formulations in GEOS‐Chem (v10‐01) shows very large underpredictions of SOA and O/C (5×) and overprediction of POA (2×). We strongly recommend against using that formulation in future studies. Semivolatile POA, an alternative default in GEOS‐Chem, or a simplified parameterization (SIMPLE) were closer to the observations, although still with substantial differences. A case study of urban outflow from metropolitan New York City showed a consistent amount and normalized rate of added OA mass (due to SOA formation) compared to summer studies, although proceeding more slowly due to lower OH concentrations. A box model and SIMPLE perform similarly for WINTER as for Los Angeles, with an underprediction at ages \u3c6 hr, suggesting that fast chemistry might be missing from the models

    Anthropogenic Control over Wintertime Oxidation of Atmospheric Pollutants

    Get PDF
    Anthropogenic air pollutants such as nitrogen oxides (NO(x) = NO + NO(2)), sulfur dioxide (SO(2)), and volatile organic compounds (VOC), among others, are emitted to the atmosphere throughout the year from energy production and use, transportation, and agriculture. These primary pollutants lead to the formation of secondary pollutants such as fine particulate matter (PM(2.5)) and ozone (O(3)) and perturbations to the abundance and lifetimes of short-lived greenhouse gases. Free radical oxidation reactions driven by solar radiation govern the atmospheric lifetimes and transformations of most primary pollutants and thus their spatial distributions. During winter in the mid and high latitudes, where a large fraction of atmospheric pollutants are emitted globally, such photochemical oxidation is significantly slower. Using observations from a highly instrumented aircraft, we show that multi-phase reactions between gas-phase NO(x) reservoirs and aerosol particles, as well as VOC emissions from anthropogenic activities, lead to a suite of atypical radical precursors dominating the oxidizing capacity in polluted winter air, and thus, the distribution and fate of primary pollutants on a regional to global scale
    corecore