1 Anthropogenic control over wintertime oxidation of atmospheric

2 pollutants

- 4 J.D. Haskins,¹ F.D. Lopez-Hilfiker,^{1†} B. H. Lee,¹ V. Shaw,^{1††} G. M. Wolfe,^{2,3} J. DiGangi,⁴ D.
- 5 Fibiger,^{5,13}^{†††} E.E. McDuffie,^{5,6,13}[‡] P. Veres,⁵ J.C. Schroder,^{5,6} P. Campuzano-Jost,^{5,6} D.A. Day,^{5,6}
- 6 J. Jimenez,^{5,6} A. Weinheimer,⁷ T. Sparks,⁸ C. Ebben,⁸ R. C. Cohen,⁸ T. Campos,⁷ A. Sullivan,⁹ H.
- Guo,¹⁰ R. Weber,¹⁰ J. Dibb,¹¹ J. Greene,¹² M. Fiddler,¹² S. Bililign,¹² L. Jaegle,¹ S.S. Brown,^{7,13}
 J.A. Thornton^{1*}
- 8 9
- ¹Department of Atmospheric Sciences, University of Washington, Seattle, WA USA
- ² Joint Center for Earth Systems Technology, University of Maryland Baltimore County,
- 12 Baltimore, MD USA
- 13 ³Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center,
- 14 Greenbelt, MD USA
- ⁴NASA Langley Research Center, Hampton, VA USA
- ⁵ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder,
- 17 CO, USA
- ⁶ Department of Chemistry, University of Colorado, Boulder, CO USA
- ⁷ Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO USA
- 20 ⁸ Department of Chemistry, University of California, Berkeley CA USA
- ⁹ Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO USA
- ¹⁰ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- ¹¹ Department of Earth Sciences, University of New Hampshire, Durham, NH USA
- ¹² Department of Physics, North Carolina A&T State University, Greensboro, NC USA
- ¹³ Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO USA
- 26
- 27 † Now at Tofwerk AG, Switzerland
- 28 †† Now at Harvard University, Cambridge, USA
- 29 ††† Now at California Air Resources Board, Sacramento, USA
- 30 [‡] Now at the Department of Physics and Atmospheric Science, Dalhousie University, Halifax,
- 31 NS, Canada
- 32
- 33 34

* Correspondence to: <u>thornton@atmos.washington.edu</u>

50 Anthropogenic air pollutants such as nitrogen oxides ($NO_x = NO + NO_2$), sulfur dioxide (SO₂), 51 and volatile organic compounds (VOC), among others, are emitted to the atmosphere throughout the year from energy production and use, transportation, and agriculture. These 52 53 primary pollutants lead to the formation of secondary pollutants such as fine particulate 54 matter ($PM_{2,5}$) and ozone (O_3) [Seinfeld, 1989; Dabdub et al., 1997; Jacobson et al., 2000; 55 Volkamer et al., 2006;], as well as to acid and nutrient deposition to ecosystems [Schofield, 56 1976; Irwin et al., 1988; Menz et al., 2004; Greaver et al., 2012;] and perturbations to the 57 abundance and lifetimes of short-lived greenhouse gases [Wang et al., 1976; Fishman et al., 58 1980; Jacob & Winner, 2009; Ramanathan et al., 2009;]. Free radical oxidation reactions 59 driven by solar radiation govern the atmospheric lifetimes and transformations of most 60 primary pollutants and thus their spatial distributions [Weinstock, 1969; Levy, 1971; Seinfeld, 61 1989; Collins et al., 2002;]. During winter in the mid and high latitudes, where a large fraction 62 of atmospheric pollutants are emitted globally, such photochemical oxidation is significantly slower [Levy et al., 1985; Klonecki & Levy, 1997; Yienger et al., 1999]. Using observations 63 64 from a highly instrumented aircraft, we show that multi-phase reactions between gas-phase 65 NO_x reservoirs and aerosol particles, as well as VOC emissions from anthropogenic activities, lead to a suite of atypical radical precursors dominating the oxidizing capacity in polluted 66 67 winter air, and thus, the distribution and fate of primary pollutants on a regional to global 68 scale.

69

In the warmer and more photochemically active summer months, the photolysis of ozone (O₃) in
the presence of water vapor leads to production of hydroxyl radicals (OH).

72

73 74 $O_3 + h\nu (\lambda < 320 \text{ nm}) + H_2O \rightarrow 2OH + O_2$ (1)

75 OH radicals initiate the rapid formation of multiple secondary pollutants such as O₃ and secondary 76 organic aerosols (SOA) during volatile organic compound (VOC) degradation, as well as sulfuric 77 acid and nitric acid (HNO₃) from reaction with sulfur dioxide and nitrogen dioxide (NO₂). During 78 winter, primary radical production via R1 is reduced by more than an order of magnitude due to 79 the combination of reduced sunlight and water vapor [Klonecki & Levy, 1997; Yienger et al., 1999]. 80 Therefore, pollutants, such as nitrogen oxides ($NO_x = NO + NO_2$), VOC, and SO₂, oxidize more 81 slowly during winter and spread over wider geographic areas than during summer. The overall 82 lower radical production expected during winter suggests a higher sensitivity to the presence of less 83 common radical sources. Yet, few observational constraints of wintertime radical precursors exist 84 on scales suitable to test models of pollutant transport and transformations.

85

86 During winter, multiphase processes and direct emissions of photo-labile molecules significantly 87 influence the primary radical budget. For example, at night, nitrogen dioxide (NO₂) reacts with O_3 88 to generate the nitrate radical (NO_3), which subsequently reacts with NO_2 to form dinitrogen 89 pentoxide (N_2O_5) . In winter, N_2O_5 is a major nocturnal reservoir of NO_x radicals and known to 90 react on aerosol particles, clouds, and ground surfaces, but not in the gas-phase. Aerosol particles 91 often have significant liquid water, catalyzing the hydrolysis of N_2O_5 to two HNO₃ molecules, 92 thereby limiting the lifetime of NO_x and impacting PM_{2.5} and acid deposition through subsequent 93 gas-particle partitioning of HNO₃ to form particulate nitrate (pNO_3) or deposition of HNO₃ to the 94 ground [Platt and Heintz, 1994; Richards, 1983; Dentener and Crutzen, 1993; Smith et al., 1995; 95 Alexander et al., 2009;]. In particles with sufficient chloride content (pCl⁻), N_2O_5 will react 96 predominantly to form nitryl chloride and pNO₃⁻ [Finlayson-Pitts et al., 1989; Behnke & Zetzsch, 97 1990; Zetzsch & Behnke, 1992]. During the morning hours, CINO₂ undergoes photolysis 98 recycling NO_x, increasing its lifetime and transport from source regions, while also releasing 99 highly reactive chlorine radicals (Cl), which initiate the oxidation of hydrocarbons as fast or even 100 10 to 100 times faster than OH [Orlando et al., 2003; Platt & Hönninger, 2003; Simpson et al.,

101 2015]. N_2O_5 that does not react overnight quickly becomes NO_x during the subsequent day due to 102 NO_3 radical photochemistry.

103

104	$NO_2 + O_3 \rightarrow NO_3 + O_2$	(R2)
105	$NO_2 + NO_3 \rightleftharpoons N_2O_5$	(R3)
106	$N_2O_5 + H_2O$ (het) $\rightarrow 2HNO_3$	(R4a)
107	$N_2O_5 + Cl^- \rightarrow NO_3^- + ClNO_2$	(R4b)
108	$CINO_2 + hv \rightarrow Cl + NO_2$	(R5)
109	$Cl + RH \rightarrow HCl + RO$	(R6)

110

111 Utilizing the NSF/NCAR C-130 aircraft during the WINTER campaign, simultaneous airborne 112 observations of all components involved in the conversion of NO_x to N₂O₅ and its corresponding 113 multiphase reactants and products were made (See Figure 1 and supplemental information, SI). 114 Mixing ratios of speciated nitrogen oxides measured by mass spectrometry including ClNO₂, 115 N₂O₅, HNO₃, and nitrous acid (HONO), together with NO and NO₂ measured by 116 chemiluminescence (Figure 1, top panels) explain the independently measured sum total reactive 117 nitrogen abundance (NO_y= NO_x + 2* N₂O₅ +ClNO₂ +HNO₃ +HONO + ...) at all points along the

flight track (Figure 1, bottom). Westerly winds export NO_x emissions from the polluted urban

119 corridor of the Northeast U.S. into the marine boundary layer (MBL) over the Atlantic Ocean.

120 Over the course of a winter night, our observations show that \sim 25-50% of NO_x is converted to

121 N_2O_5 , much of which reacts in the MBL to form HNO₃ and ClNO₂ (see SI).

122

123 Using the suite of *in situ* observations, we can directly assess the importance of each radical 124 source to the oxidative capacity of the wintertime atmosphere (See SI for details). An example set 125 of results from such calculations is shown in Figure 1 (c). We use observed nighttime 126 concentrations of O₃, humidity, ClNO₂, formaldehyde (HCHO), and HONO together with 127 modeled photolysis frequencies to calculate the total integrated concentraion of radicals that 128 would be produced by these precursors over the following day. Other radical sources, such as 129 from alkene ozonolysis or dihalogen photolysis were small on a regional basis during WINTER 130 (see SI). While the nocturnal atmosphere near the surface over land is poorly mixed (See SI), 131 vertical profiling provided by the aircraft allowed us to uniquely assess the vertical extent of these 132 radical precursors. As expected, we found that over relatively warmer water in the MBL, air is 133 relatively well mixed up to 800-1500 m altitude (e.g. Figure 2), allowing more straightforward 134 calculations of radical budgets from measured concentrations.

135

As pollution is transported offshore overnight, and ClNO₂ formation continues, we find that
ClNO₂ photolysis (R5) becomes the single largest source of radical oxidants. The latest pollution
intercept occurred before midnight local time, and several more hours of N₂O₅ production and
multiphase chemistry could be expected. Estimates of N₂O₅ reactivity on aerosol particles and
ClNO₂ yield derived from *in situ* observations [McDuffie et al., 2018a; McDuffie et al., 2018b;]
suggest ClNO₂ concentrations would have continued to increase overnight, accounting for as
much as 80% of the daytime radical source the next day.

143

Other important observed radical sources are O₃ via R1, HCHO via R6 and HONO via R7.

- 146 HCHO + hv ($\lambda < 324$ nm) + 2O₂ \rightarrow 2HO₂ + CO (R6)
- 147 HONO + hv ($\lambda < 578 \text{ nm}$) \rightarrow OH + NO (R7)
- 148

149 HCHO photolysis leads to the net formation of two HO₂ radicals, which rapidly cycle to OH in 150 the presence of NO. Annual HCHO sources are dominated by *in situ* VOC oxidation, but during 151 winter, negligible biogenic emissions of isoprene [Goldstein et al., 1998; Luecken et al., 2012;], 152 and overall lower radical concentrations, reduce the secondary production of HCHO. HCHO is directly emitted from a variety of anthropogenic activities, e.g. inefficient combustion and 153 154 manufacturing processes [Sigsby et al., 1987; Altshuller, 1993; Anderson et al., 1996; Kelly et al., 155 1999], but with currently uncertain magnitudes and spatial distributions. The GEOS-Chem global 156 transport model underestimates the observed WINTER HCHO by a factor of 2 on average (see 157 SI). Increasing the direct anthropogenic emission of HCHO in the model by a factor of 5 brings 158 the model into good agreement with the observations, with approximately half the HCHO in the 159 model arising from secondary oxidation of anthropogenic VOC and half from direct emissions. 160 Increasing the emissions of anthropogenic VOC that react on an hour timescale to produce 161 HCHO instead of direct emissions of HCHO would also be consistent with the observations, 162 though appropriate observational constraints are lacking. There is strong evidence that emissions 163 of HCHO and related oxygenated VOC from automobiles are significantly higher in the 164 wintertime due to the inefficient combustion associated with cold engine starts [Anderson et al., 1994; Anderson et al., 1996; Li et al., 2010; Clairotte et al., 2013]. Moreover, the observed 165 166 HCHO is strongly correlated with tracers of fossil fuel and wood combustion (See SI). While 167 smaller than the summertime HCHO sources from biogenic VOC degradation [Fortems-Cheiney 168 et al., 2012; Luecken et al., 2012; Wolfe et al., 2016;], the wintertime anthropogenic emissions of 169 HCHO or its precursors that we infer are very important to the regional source of radicals.

170

171 HONO is both directly emitted from combustion [Kirchstetter et al., 1996; Stutz et al., 2002;], 172 and formed *in situ* from multiphase chemistry of NO₂ as well as pNO_3^- photolysis [Kleffmann, 173 2007; Zhou et al., 2011;]. Figure 1 shows that the measured nighttime HONO concentrations are 174 a small contributor to the primary daytime radical source over the surveyed domain. HONO is 175 more important near the urban areas, very close to the surface (<100 m), and more generally 176 enhanced over land than in the MBL (see SI). Our observations suggest a smaller role for HONO 177 on a regional basis in the daily integrated radical budget than might be inferred from ground-178 based observations due to the poorly mixed nocturnal atmosphere [Febo et al., 1996; Stutz et al., 179 2002; Wong et al., 2012]. However, the estimates in Figure 1 neglect a potential source from 180 pNO₃⁻ photolysis, which we assess below.

181

182 The above estimates of daytime radical sources shown in Figure 1 evolve as expected at sunrise 183 as shown in Figure 2. A stalled high-pressure system offshore of New Jersey allowed us a unique 184 opportunity to make multiple transects throughout the morning (Figure 2a) of pollution from the 185 greater New York City area that had aged overnight in the MBL (see SI). As the sun rose during 186 the flight, vertical profiles (Figure 2b) conducted along various segments revealed that the 187 instantaneous radical source from CINO₂ photolysis was 60-80% of the total primary radical 188 source throughout the entire MBL. The importance of ClNO₂ as a radical source decreased 189 substantially at altitudes above the MBL, while that of O_3 via R1 increased as expected given the 190 steep gradients in $CINO_2$ precursors (NO_x and aerosol particles) between the polluted boundary 191 layer and overlying free troposphere. The observed instantaneous production rate of radicals 192 from $CINO_2$ was a factor of 5 to 10 larger than the other radical sources throughout the morning 193 as the aircraft made multiple intercepts of the pollution plume. HONO photolysis was the next 194 largest instantaneous radical source, in part due to its larger photolysis rate coefficient compared 195 to HCHO. Nighttime N_2O_5 chemistry is a removal mechanism for O_3 (R2-R4) [Platt et al., 1984; 196 Brown et al., 2004] and as such O_3 mixing ratios are often suppressed in NO_x-rich air masses 197 during the night and morning [Stutz et al., 2004], which contributes in part to the negligible 198 instantaneous source of radicals from R1 in the polluted MBL. The aircraft returned to its base 199 (segment E, Figure 2A) by flying above the MBL, where we find that the background

tropospheric source of radicals is dominated by that from O_3 photolysis (R1), consistent with expectations.

202

203 We extend this instantaneous observational analysis during this flight using the Framework for 0-204 D Atmospheric Modeling (F0AM) (Wolfe et al., 2016), which is based on the master chemical 205 mechanism version 3.3.1 that explicitly tracks over 5800 chemical species in over 17,000 206 reactions (Bloss et al., 2005; Jenkin et al., 1997, 2003; Saunders et al., 2003) by preforming two 207 simulations; one including and one excluding reactions from chlorine and heterogeneous N_2O_5 208 formation described in Riedel et al., (2014). Initializing FOAM with WINTER measurements of 209 VOCs and inorganic gas phase species (see SI for details), Figure 3 shows the radical budget 210 occurring the day following our interception of the maximum ClNO₂ concentration observed, 211 which occurred on this flight at 6:40am in Figure 2c at point D in Figure 2a. Consistent with our 212 observational analysis, the F0AM predicted instantaneous radical production rate from ClNO₂ 213 was a factor of 5 to 12 larger than the other largest radical source throughout the morning, shown 214 in Figure 3. Excluding reactions involving chlorine in FOAM caused an underestimate in the 215 integrated daily radical budget the following day of 1.8 ppbv, or a factor of 3.75. This 216 underestimate occurs primarily from excluding the early morning source of Cl radicals from 217 $ClNO_2$ photolysis, but also from a 114% enhancement (0.62 ppby) in the integrated daily 218 [HCHO] that occurred because of an increase in VOC oxidation by those Cl radicals (see SI), and 219 an increase in the daily integrated ozone production of 4.7 ppby, thereby increasing the local 220 source of OH from O₃ photolysis. These results highlight the importance of nocturnal 221 heterogeneous chlorine chemistry in coupling the secondary oxidation of VOCs, NO_v and HO_x 222 cycling, in the overall predicted daily radical budget within the WINTER domain. 223

224 We conducted 13 research flights, equally covering daytime and nighttime conditions, over land 225 and the ocean, throughout the eastern U.S. domain (see Figure 1). Applying the above 226 instantaneous radical source analysis to the wider set of flights illustrates the major importance of 227 HCHO and ClNO₂ as radical precursors, with both being more important in polluted air, 228 represented by increasing NO_x mixing ratios as shown in Figure 4. These results illustrate the 229 control of wintertime radical sources by anthropogenic emissions of NO_x and VOC, and subsequent multiphase chemistry, with > 70% of the radical source stemming not from the 230 231 canonical reaction R1, but from ClNO₂, HCHO, and HONO photolysis. Daytime observations underestimate the overall contributions of HONO and CINO₂ to the total primary radical source 232 233 because both species photolyze rapidly and may not be reformed until night. Over land, this effect 234 causes an approximately 10% underestimate of the daily radical source from ClNO₂.

235

236 More over, recent studies suggest photolysis of pNO_3^- may be an important daytime HONO 237 source, which would not be captured by our strictly observational approach. If daytime 238 production of HONO from pNO_3^{-} photolysis occurs at the seasonally adjusted rate recently 239 suggested from summertime observations [Ye et al., 2016;], and which our observations do not 240 contradict (see SI), then HONO photolysis integrated over the day would increase the total radical 241 source shown in Figure 4 by $\sim 50\%$ over land, with smaller but non-negligible contributions in the 242 polluted MBL (See SI). Thus, the primary radical budget during winter may well be larger, with 243 even stronger connection to anthropogenic pollution and atypical radical sources than indicated 244 by our conservative estimate shown in Figure 4.

245

HCHO emissions and the multiphase chemistry of nitrogen oxides that produces $CINO_2$, pNO_3^- , and HONO, are highly parameterized components of air quality or chemistry climate models, if

- included at all [Behnke et al., 1997; Perice et al., 1998; Evans & Jacob et al., 2005; Riemer et al.,
- 249 2003; Anttila et al., 2006; Guenther et al., 2006; Davis et al., 2008; Bertram & Thornton, 2009;
- 250 Griffiths et al., 2009; Roberts et al., 2009; Vinken et al., 2011; Barkley et al., 2012; Ryder et al.,

2015;]. Incorporating only CINO₂ and HCHO sources consistent with the observations from the
WINTER campaign into the GEOS-Chem model of global atmospheric chemistry and transport,
we find significant impacts on climate and air quality quantities. For example, PM_{2.5} components,
such as SOA and sulfate increase, while nitrate decreases (see SI), and NO_x shifts further into its

255 labile reservoirs, such as peroxy acetyl nitrate (PAN, see Figure 5). These changes are driven by

subsequent increased concentrations of oxidant initiators such as HO_x (OH + HO₂) radicals,

257 which increase by 40-80% over the WINTER domain from increased HCHO photolysis and VOC

- 258 + Cl reactions, with concomitant increases in ozone production (see SI).
- 259

260 Wintertime sulfate is often underestimated by air quality models, while pNO_3^- and nitrate 261 deposition over land have been overestimated [Tesche et al., 2002; Heald et al., 2012; Walker et 262 al., 2012; Gao et al., 2016;]. Additionally, the split between primary and secondary OA remains 263 poorly tested on a regional basis during winter [Fuzzi et al., 2006; Jimenez et al., 2009;]. The 264 increases in regional radical oxidants and changes to NO_x multiphase chemistry implied by our 265 observations reduce such discrepancies and uncertainties. Moreover, these changes halve model 266 underestimates (from 30% to 15% bias) of total peroxy nitrates (such as PAN) measured during WINTER, providing additional support for increased oxidation initiated by atypical radical 267 268 sources, and increased export of NO_x reservoirs to the global free troposphere.

269

270 We have shown that anthropogenic emissions of NO_x and of HCHO and its analogues exert 271 control over the primary source of radical oxidants in polluted air during winter. In the case of 272 HCHO, the dormant wintertime biosphere strongly implies its wintertime sources are dominated 273 by anthropogenic emissions, which are likely enhanced due to inefficient combustion, such as 274 during vehicular cold-starts and residential wood smoke. In the case of NO_x , the natural shift 275 towards nocturnal multi-phase processing and an availability of sea-spray derived particulate 276 chloride allowed the first observational confirmation that its conversion to ClNO₂ represents a 277 critically important wintertime radical source throughout the polluted MBL that also serves to 278 enhance [HCHO]. A daytime source of HONO from pNO_3^- photolysis, where the pNO_3^- 279 enhancements stem from multi-phase processing of NO_x emissions would only increase the 280 importance of local and regional anthropogenic emissions over the wintertime radical budget.

281

282 The coupling of NO_x emissions, multiphase conversion to pNO_3^- and $ClNO_2$, and subsequent 283 pNO₃⁻ photolysis to HONO represent a potentially dominant source of radicals in polluted 284 wintertime air. These insights lead to predictions of increased $PM_{2.5}$ and increased export of NO_x 285 to the remote troposphere via PAN, where short-lived greenhouse gases such as O_3 and CH_4 are 286 far more sensitive to its presence [Singh et al., 1981; Roberts et al., 1990]. Other regions of the 287 world, such as China, Europe, and northern India also experience high NO_x, VOC sources from 288 inefficient combustion and reactive chlorine during winter [Sarwar et al., 2014; Lowe et al., 2015; 289 Li et al., 2016;]. Our findings therefore suggest important global scale revisions to our 290 understanding of wintertime pollution transformations, transport and deposition.

- 291
- 292
- 293
- 294
- 295 296
- 290
- 297
- 298 299
- 299 300
- 301

302 303	References
304 305 306 307 308	Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., & Kunasek, S. A. (2009). Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ ¹⁷ O) of atmospheric nitrate. <i>Atmos. Chem. Phys.</i> , 9(14), 5043–5056. <u>https://doi.org/10.5194/acp-9-5043-2009</u>
309 310 311 312 313	Altshuller, A. P. (1993). Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours. <i>Atmospheric Environment. Part A. General Topics</i> , 27(1), 21–32. <u>https://doi.org/https://doi.org/10.1016/0960-1686(93)90067-9</u>
314 315 316 317 318	Anderson, L. G., Lanning, J. A., Barrell, R., Miyagishima, J., Jones, R. H., & Wolfe, P. (1996). Sources and sinks of formaldehyde and acetaldehyde: An analysis of Denver's ambient concentration data. <i>Atmospheric Environment</i> , 30(12), 2113–2123. <u>https://doi.org/https://doi.org/10.1016/1352-2310(95)00175-1</u>
319 320 321 322 323	 Anderson, L. G., Wolfe, P., Barrell, R. A., & Lanning, J. A. (1994). The effects of oxygenated fuels on the atmospheric concentrations of carbon monoxide and aldehydes in Colorado. In F Sterrett (Ed.), <i>Alternative Fuesl and the Environment</i> (pp. 75–103). Boca Raton, Florida: Lewis Publishers.
324 325 326 327 328	Anttila, T., Kiendler-Scharr, A., Tillmann, R., & Mentel, T. F. (2006). On the Reactive Uptake of Gaseous Compounds by Organic-Coated Aqueous Aerosols: Theoretical Analysis and Application to the Heterogeneous Hydrolysis of N2O5. <i>The Journal of Physical Chemistry</i> <i>A</i> , 110(35), 10435–10443. <u>https://doi.org/10.1021/jp062403c</u>
329 330 331 332 333	Barkley, M. P., Kurosu, T. P., Chance, K., De Smedt, I., Van Roozendael, M., Arneth, A., Guenther, A. (2012). Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates. <i>Journal of</i> <i>Geophysical Research: Atmospheres</i> , 117(D13). <u>https://doi.org/10.1029/2011JD016827</u>
334 335 336 337	Behnke, W., & Zetzsch, C. (1990). Heterogeneous photochemical formation of Cl atoms from NaCl aerosol, NOx and ozone. <i>Journal of Aerosol Science</i> , 21, S229–S232. <u>https://doi.org/https://doi.org/10.1016/0021-8502(90)90226-N</u>
338 339 340 341 342	Behnke, W., George, C., Scheer, V., & Zetzsch, C. (1997). Production and decay of CINO2 from the reaction of gaseous N2O5 with NaCl solution: Bulk and aerosol experiments. <i>Journal of</i> <i>Geophysical Research: Atmospheres</i> , 102(D3), 3795–3804. <u>https://doi.org/10.1029/96JD03057</u>
343 344 345 346	Bertram, T. H., & Thornton, J. A. (2009). Toward a general parameterization of N ₂ O ₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. <i>Atmos. Chem. Phys.</i> , <i>9</i> (21), 8351–8363. <u>https://doi.org/10.5194/acp-9-8351-2009</u>
347 348 349 350	 Brown, S. S., Dibb, J. E., Stark, H., Aldener, M., Vozella, M., Whitlow, S., Ravishankara, A. R. (2004). Nighttime removal of NOx in the summer marine boundary layer. <i>Geophysical Research Letters</i>, 31(7). <u>https://doi.org/10.1029/2004GL019412</u>
351 352	Clairotte, M., Adam, T. W., Zardini, A. A., Manfredi, U., Martini, G., Krasenbrink, A., Astorga, C. (2013). Effects of low temperature on the cold start gaseous emissions from

353 354	light duty vehicles fuelled by ethanol-blended gasoline. <i>Applied Energy</i> , 102, 44–54. <u>https://doi.org/https://doi.org/10.1016/j.apenergy.2012.08.010</u>
355 356 357 358	Collins, W. J., Derwent, R. G., Johnson, C. E., & Stevenson, D. S. (2002). The Oxidation of Organic Compounds in the Troposphere and their Global Warming Potentials. <i>Climatic Change</i> , 52(4), 453–479. <u>https://doi.org/10.1023/A:1014221225434</u>
359 360 361	Committee on Aldehydes: National Research Council. (1981). <i>Formaldehyde and other aldehydes</i> . (N. Grossblatt, Ed.). Washington, D.C.: National Academy Press.
363 364 365 366 367	Dabdub, D., Meng, Z., & Seinfeld, J. H. (1997). Chemical bonding between atmospheric ozone and particulate matter. <i>Science</i> , 276, 116+. Retrieved from <u>http://link.galegroup.com/apps/doc/A19628485/AONE?u=wash_main&sid=AONE&xid=5e</u> <u>b5f24d</u>
368 369 370	Davis, J. M., Bhave, P. V, & Foley, K. M. (2008). Parameterization of N ₂ O ₅ reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate. <i>Atmos. Chem. Phys.</i> , 8(17), 5295–5311. <u>https://doi.org/10.5194/acp-8-5295-2008</u>
372 373 374 275	Dentener, F. J., & Crutzen, P. J. (1993). Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NO x , O3, and OH. <i>Journal of Geophysical Research:</i> <i>Atmospheres</i> , 98(D4), 7149–7163. <u>https://doi.org/10.1029/92JD02979</u>
375 376 377 378 270	Evans, M. J., & Jacob, D. J. (2005). Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH. <i>Geophysical Research Letters</i> , 32(9). <u>https://doi.org/10.1029/2005GL022469</u>
379 380 381 382	Febo, A., Perrino, C., & Allegrini, I. (1996). Measurement of nitrous acid in milan, italy, by doas and diffusion denuders. <i>Atmospheric Environment</i> , 30(21), 3599–3609. <u>https://doi.org/https://doi.org/10.1016/1352-2310(96)00069-6</u>
383 384 385 386	Finlayson-Pitts, B. J., Ezell, M. J., & Pitts, J. N. (1989). Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. <i>Nature</i> , 337(6204), 241–244. <u>http://dx.doi.org/10.1038/337241a0</u>
387 388 389	Fishman, J., Ramanathan, V., Crutzen, P. J., & Liu, S. C. (1979). Tropospheric ozone and climate. <i>Nature</i> , 282(5741), 818–820. <u>https://doi.org/10.1038/282818a0</u>
390 391 392 393 394 395	Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Saunois, M., Szopa, S., Fried, A. (2012). The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system. <i>Atmos. Chem. Phys.</i> , <i>12</i> (15), 6699–6721. <u>https://doi.org/10.5194/acp-12-6699-2012</u>
395 396 397 398 399 400	Fuzzi, S., Andreae, M. O., Huebert, B. J., Kulmala, M., Bond, T. C., Boy, M., Pöschl, U. (2006). Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. <i>Atmos. Chem. Phys.</i> , 6(7), 2017–2038. <u>https://doi.org/10.5194/acp-6-2017- 2006</u>
401 402 403	Gao, M., Carmichael, G. R., Wang, Y., Ji, D., Liu, Z., & Wang, Z. (2016). Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous

oxid http://	lation by NO2. Frontiers of Environmental Science & Engineering, 10(5), 16. s://doi.org/10.1007/s11783-016-0878-2
Goldstein cour <i>Rese</i>	A. H., Goulden, M. L., Munger, J. W., Wofsy, S. C., & Geron, C. D. (1998). Seasonal rese of isoprene emissions from a midlatitude deciduous forest. <i>Journal of Geophysical earch: Atmospheres</i> , <i>103</i> (D23), 31045–31056. <u>https://doi.org/10.1029/98JD02708</u>
Greaver, 7 K. J. knov <u>http</u>	T. L., Sullivan, T. J., Herrick, J. D., Barber, M. C., Baron, J. S., Cosby, B. J., Novak, . (2012). Ecological effects of nitrogen and sulfur air pollution in the US: what do we w? <i>Frontiers in Ecology and the Environment</i> , <i>10</i> (7), 365–372. s://doi.org/10.1890/110049
Griffiths, Read Phas 5082	P. T., Badger, C. L., Cox, R. A., Folkers, M., Henk, H. H., & Mentel, T. F. (2009). ctive Uptake of N2O5 by Aerosols Containing Dicarboxylic Acids. Effect of Particle se, Composition, and Nitrate Content. <i>The Journal of Physical Chemistry A</i> , <i>113</i> (17), 2–5090. <u>https://doi.org/10.1021/jp8096814</u>
Guenther, of gl Aero <u>6-31</u>	, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates lobal terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and osols from Nature). <i>Atmos. Chem. Phys.</i> , <i>6</i> (11), 3181–3210. <u>https://doi.org/10.5194/acp-181-2006</u>
Heald, C. T. (2 Atm	L., Collett Jr., J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., Pye, H. O. 2012). Atmospheric ammonia and particulate inorganic nitrogen over the United States. <i>os. Chem. Phys.</i> , <i>12</i> (21), 10295–10312. <u>https://doi.org/10.5194/acp-12-10295-2012</u>
Irwin, J. C Poll	G., & Williams, M. L. (1988). Acid rain: Chemistry and transport. <i>Environmental lution</i> , 50(1), 29–59. <u>https://doi.org/https://doi.org/10.1016/0269-7491(88)90184-4</u>
Jacob, D. Envi	J., & Winner, D. A. (2009). Effect of climate change on air quality. <i>Atmospheric ironment</i> , 43(1), 51–63. <u>https://doi.org/https://doi.org/10.1016/j.atmosenv.2008.09.051</u>
Jacobson, aero <u>http</u>	, M. C., Hansson, HC., Noone, K. J., & Charlson, R. J. (2000). Organic atmospheric pools: Review and state of the science. <i>Reviews of Geophysics</i> , <i>38</i> (2), 267–294. s://doi.org/10.1029/1998RG000045
Jimenez, Wor 326	J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., rsnop, D. R. (2009). Evolution of Organic Aerosols in the Atmosphere. <i>Science</i> , (5959), 1525 LP-1529. <u>https://doi.org/10.1126/science.1180353</u>
Kelly, T and <i>33</i> (1	J., Smith, D. L., & Satola, J. (1999). Emission Rates of Formaldehyde from Materials Consumer Products Found in California Homes. <i>Environmental Science & Technology</i> , 1), 81–88. <u>https://doi.org/10.1021/es980592</u> +
Kirchstett Mot <u>http</u>	ter, T. W., Harley, R. A., & Littlejohn, D. (1996). Measurement of Nitrous Acid in for Vehicle Exhaust. <i>Environmental Science & Technology</i> , <i>30</i> (9), 2843–2849. s://doi.org/10.1021/es960135y
Kleffman Laye	n, J. (2007). Daytime Sources of Nitrous Acid (HONO) in the Atmospheric Boundary er. <i>ChemPhysChem</i> , 8(8), 1137–1144. <u>https://doi.org/10.1002/cphc.200700016</u>

455 456	Klonecki, A., & Levy II, H. (1997). Tropospheric chemical ozone tendencies in CO-CH4-NOy-
400	H2O system: Their sensitivity to variations in environmental parameters and their
457	application to a global chemistry transport model study. <i>Journal of Geophysical Research:</i>
408	Atmospheres, 102(D17), 21221–21237. <u>https://doi.org/10.1029/97JD01805</u>
459	
460	Levy II, H., Mahlman, J. D., Moxim, W. J., & Liu, S. C. (1985). Tropospheric ozone: The role of
461	transport. Journal of Geophysical Research: Atmospheres, 90(D2), 3753–3772.
462	https://doi.org/10.1029/JD090iD02p03753
463	
464 465 466	Levy, H. (1971). Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted. <i>Science</i> , <i>173</i> (3992), 141 LP-143. <u>https://doi.org/10.1126/science.173.3992.141</u>
467	Li I Gong C Wang F Vu X Wang Z & Liu X (2010) Emissions of Formaldehyde and
169	Li, J., Oong, C., Wang, E., Tu, X., Wang, Z., & Elu, X. (2010). Emissions of Formateenyde and Unburned Mothenel from a Spork Ignition Mothenel Engine during Cold Stort. <i>Energy &</i>
400	Evals $24(2)$ 862 870 https://doi.org/10.1021/sf0000082
409	<i>Fuels</i> , 24(2), 805–870. <u>https://doi.org/10.1021/ei9009982</u>
470	Li O Zhang I Wang T Them V I Ahmaday B Yua I Zhang I (2016) Immastrati
471	LI, Q., Zhang, L., Wang, T., Than, T. J., Annadov, K., Aue, L., Zheng, J. (2010). Impacts of
472	neterogeneous uptake of dimitrogen pentoxide and chiorine activation on ozone and reactive
473	The set of
4/4	China. Atmos. Chem. Phys., 10(25), 14875–14890. <u>https://doi.org/10.5194/acp-10-14875-</u>
475	2010
470	Lowo D. Archar Nicholls S. Margan W. Allan I. Utamba S. Owang P. McEiggang G.
4//	(2015) WDE Cham model predictions of the regional impacts of N.O. haterogeneous
470	(2013). WKF-Chem model predictions of the regional impacts of N_2O_5 heterogeneous
4/9	1285 1400 https://doi.org/10.5104/ser.15.1285.2015
480	1585–1409. <u>https://doi.org/10.5194/acp-15-1585-2015</u>
401	Lucelton D. L. Hutzell, W. T. Strum, M. L., & Douliet, C. A. (2012). Deciencel courses of
402	Lucckell, D. J., Hulzell, W. I., Shulli, W. L., & Poulloi, G. A. (2012). Regional sources of
403	Atmospheric formation you and acctation you, and implications for atmospheric modering.
404 405	Atmospheric Environment, 47, 47, 47, 490.
400	https://doi.org/https://doi.org/10.1010/j.aunosenv.2011.10.005
400	MaDuffia E E Eibigar D I Dubé W D I anaz Hilfikar E I az D H Jacolá I – Drown
407 700	NicDuille, E. E., Floiger, D. L., Dube, W. F., Lopez Hillker, F., Lee, B. H., Jaegle, L., Diowil, S. S. (2018). CINO2 Violds From Aircraft Measurements During the 2015 WINTED
400	S. S. (2018). CINO2 TIERDS FIOIR Alternal Measurements During the 2015 with TER
489	Campaign and Childran Evaluation of the Cuffent Parameterization. Journal of Geophysical $P_{\rm eval}$
490	Research: Atmospheres, 123(22), 12,15,913-994. <u>https://doi.org/10.1029/2018JD029358</u>
491	M.D.C. E.E.E.L
492	McDullie, E. E., Floiger, D. L., Dube, W. P., Lopez-Hilliker, F., Lee, B. H., Hormton, J. A.,
493	Brown, S. S. (2018). Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements
494	During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations.
495	Journal of Geophysical Research: Atmospheres, 123(8), 4345–4372.
496	https://doi.org/10.1002/2018JD028336
497	
498	Menz, F. C., & Seip, H. M. (2004). Acid rain in Europe and the United States: an update.
499	Environmental Science & Policy, 7(4), 253–265.
500	https://doi.org/https://doi.org/10.1016/j.envsci.2004.05.005
501	
502	Orlando, J. J., Tyndall, G. S., Apel, E. C., Riemer, D. D., & Paulson, S. E. (2003). Rate
503	coefficients and mechanisms of the reaction of cl-atoms with a series of unsaturated
504	hydrocarbons under atmospheric conditions. International Journal of Chemical Kinetics,
505	35(8), 334–353, https://doi.org/10.1002/kin.10135

506	
507	Peirce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., & Guenther, A. (1998). Influence of
508	increased isoprene emissions on regional ozone modeling. <i>Journal of Geophysical</i>
509	Research: Atmospheres, 103(D19), 25611–25629, https://doi.org/10.1029/98JD01804
510	
511	Platt II & Hönninger G (2003) The role of halogen species in the troposphere <i>Chemosphere</i>
512	52(2) 325–338 https://doi.org/https://doi.org/10.1016/S0045-6535(03)00216-9
512	52(2), 525-556. <u>https://doi.org/https://doi.org/10.1010/50045-0555(05)00210-7</u>
514	Platt IJ F. Winer A. M. Biermann H. W. Atkinson R. & Pitts, I. N. (1984). Measurement of
515	nitrate radical concentrations in continental air. Environmental Science & Technology
515	19(5) 265 260 https://doi.org/10.1021/cc00122c015
510	$10(5), 505-509. \underline{\text{mtps://doi.org/10.1021/es00125a015}}$
517	Platt II & Haintz E (1004) Nitrata Dadicale in Transanharia Chamistry, Januar Laurur d of
510	Chamistry 24(2,4) 280, 200, https://doi.org/10.1002/jich.100400022
519	Chemistry, 34(3-4), 289–300. <u>https://doi.org/10.1002/1jch.199400033</u>
520	
521	Ramanathan, V., & Feng, Y. (2009). Air pollution, greenhouse gases and climate change: Global
522	and regional perspectives. Atmospheric Environment, 43(1), 37–50.
523	https://doi.org/https://doi.org/10.1016/j.atmosenv.2008.09.063
524	
525	Richards, L. W. (1983). Comments on the oxidation of NO2 to nitrate—day and night.
526	Atmospheric Environment (1967), 17(2), 397–402.
527	https://doi.org/https://doi.org/10.1016/0004-6981(83)90057-4
528	
529	Riedel, T. P., Wolfe, G. M., Danas, K. T., Gilman, J. B., Kuster, W. C., Bon, D. M., Thornton,
530	J. a. (2014). An MCM modeling study of nitryl chloride (ClNO ₂) impacts on oxidation,
531	ozone production and nitrogen oxide partitioning in polluted continental outflow.
532	Atmospheric Chemistry and Physics, 14(8), 3789–3800. <u>https://doi.org/10.5194/acp-14-</u>
533	<u>3789-2014</u>
534	
535	Roberts, J. M. (1990). The atmospheric chemistry of organic nitrates. Atmospheric Environment.
536	Part A. General Topics, 24(2), 243–287. https://doi.org/https://doi.org/10.1016/0960-
537	<u>1686(90)90108-Y</u>
538	
539	Roberts, J. M., Osthoff, H. D., Brown, S. S., Ravishankara, A. R., Coffman, D., Quinn, P., &
540	Bates, T. (2009). Laboratory studies of products of N2O5 uptake on Cl- containing
541	substrates. Geophysical Research Letters, 36(20). https://doi.org/10.1029/2009GL040448
542	
543	Ryder, O. S., Campbell, N. R., Shaloski, M., Al-Mashat, H., Nathanson, G. M., & Bertram, T. H.
544	(2015). Role of Organics in Regulating CINO2 Production at the Air–Sea Interface. The
545	Journal of Physical Chemistry A, 119(31), 8519–8526. https://doi.org/10.1021/jp5129673
546	
547	Sarwar, G., Simon, H., Xing, J., & Mathur, R. (2014). Importance of tropospheric ClNO2
548	chemistry across the Northern Hemisphere, <i>Geophysical Research Letters</i> , 41(11), 4050–
549	4058. https://doi.org/10.1002/2014GL059962
550	to the mining volver for to decision
551	Schofield C. L. (1976) Acid Precipitation: Effects on Fish Ambio 5(5/6) 228–230 Retrieved
552	from http://www.istor.org/stable/4312222
553	
554	Seinfeld I H (1989) Urban Air Pollution: State of the Science Science 243(4802) 745_752
555	https://doi.org/10.1126/science.243.4892.745
556	<u>111201.012/10.1120/00000.275.7072.175</u>
220	

557 558	Shepson, P. B., Hastie, D. R., So, K. W., Schiff, H. I., & Wong, P. (1992). Relationships between PAN. PPN and O3 at urban and rural sites in Ontario. <i>Atmospheric Environment, Part A.</i>
559	General Topics 26(7) 1259–1270 https://doi.org/https://doi.org/10.1016/0960-
560	1686(92)90387-Z
561	
562	Sigshy J.F. Tejada S. Ray W. Lang J.M. & Duncan J.W. (1987) Volatile organic
563	compound emissions from 46 in-use passenger cars. <i>Environmental Science & Technology</i>
564	21(5) A66 A75 https://doi.org/10.1021/es001502007
565	21(3), 400–473. <u>https://doi.org/10.1021/cs00139a007</u>
566	Singh H B & Hangt D I (1081) Deroyuggetyl nitrate (DAN) in the unpelluted atmosphere: An
567	important reconvision for nitrogen oxides. Caenhusiagl Research Latters 2(2), 041, 044
569	https://doi.org/10.1020/GL008i008p00041
560	<u>https://doi.org/10.1029/OE0081008p00941</u>
509	Smith N. Dlang, I.M.C. Night, C.E., & Solomon, D.A. (1005). Nightting radical chamistry in
570	Smith, N., Plane, J. M. C., Nien, CF., & Solomon, P. A. (1995). Nignuine radical chemistry in
571	the San Joaquin Valley. Atmospheric Environment, $29(21)$, $2887-2897$.
572	<u>nttps://doi.org/nttps://doi.org/10.1016/1352-2310(95)00032-1</u>
5/3	
5/4	Stutz, J., Alicke, B., Ackermann, R., Geyer, A., White, A., & Williams, E. (2004). Vertical
5/5	profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 1. Observations
576	during the Texas Air Quality Study 2000. Journal of Geophysical Research: Atmospheres,
577	109(D12). <u>https://doi.org/10.1029/2003JD004209</u>
578	
579	Stutz, J., Alicke, B., & Neftel, A. (2002). Nitrous acid formation in the urban atmosphere:
580	Gradient measurements of NO2 and HONO over grass in Milan, Italy. <i>Journal of</i>
581	Geophysical Research: Atmospheres, 107(D22), LOP 5-1-LOP 5-15.
582	https://doi.org/10.1029/2001JD000390
583	
584	Tesche, T. W., Morris, R., Tonnesen, G., McNally, D., Boylan, J., & Brewer, P. (2006).
585	CMAQ/CAMx annual 2002 performance evaluation over the eastern US. Atmospheric
586	Environment, 40(26), 4906–4919.
587	https://doi.org/https://doi.org/10.1016/j.atmosenv.2005.08.046
588	
589	Vinken, G. C. M., Boersma, K. F., Jacob, D. J., & Meijer, E. W. (2011). Accounting for non-
590	linear chemistry of ship plumes in the GEOS-Chem global chemistry transport model.
591	Atmos. Chem. Phys., 11(22), 11707–11722. <u>https://doi.org/10.5194/acp-11-11707-2011</u>
592	
593	Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, M.
594	J. (2006). Secondary organic aerosol formation from anthropogenic air pollution: Rapid and
595	higher than expected. Geophysical Research Letters, 33(17).
596	https://doi.org/10.1029/2006GL026899
597	
598	Walker, J. M., Philip, S., Martin, R. V, & Seinfeld, J. H. (2012). Simulation of nitrate, sulfate,
599	and ammonium aerosols over the United States. Atmos. Chem. Phys., 12(22), 11213–11227.
600	https://doi.org/10.5194/acp-12-11213-2012
601	
602	Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, T., & Hansen, J. E. (1976). Greenhouse Effects due
603	to Man-Made Perturbations of Trace Gases. Science, 194(4266), 685 LP-690.
604	https://doi.org/10.1126/science.194.4266.685
605	
606	Weinstock, B. (1969). Carbon Monoxide: Residence Time in the Atmosphere. Science.
607	166(3902), 224 LP-225. https://doi.org/10.1126/science.166.3902.224

609	Wert, B. P., Trainer, M., Fried, A., Ryerson, T. B., Henry, B., Potter, W., Wisthaler, A. (2003).
610	Signatures of terminal alkene oxidation in airborne formaldehyde measurements during
611	TexAQS 2000. Journal of Geophysical Research: Atmospheres, 108(D3).
612	https://doi.org/10.1029/2002JD002502
613	
614	Wolfe, G. M., Kaiser, J., Hanisco, T. F., Keutsch, F. N., de Gouw, J. A., Gilman, J. B.,
615	Warneke, C. (2016). Formaldehyde production from isoprene oxidation
616	across NOx regimes. Atmos. Chem. Phys., 16(4), 2597–2610. https://doi.org/10.5194/acp-
617	<u>16-2597-2016</u>
618	
619	Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., & Liao, J. (2016). The Framework for
620	0-D Atmospheric Modeling (F0AM) v3.1. Geosci. Model Dev., 9(9), 3309-3319.
621	https://doi.org/10.5194/gmd-9-3309-2016
622	
623	Wong, K. W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W. H., Stutz, J. (2012).
624	Daytime HONO vertical gradients during SHARP 2009 in Houston, TX. Atmos. Chem.
625	Phys., 12(2), 635–652. https://doi.org/10.5194/acp-12-635-2012
626	
627	Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Knote, C. (2016). Rapid cycling of
628	reactive nitrogen in the marine boundary layer. Nature, 532, 489. Retrieved from
629	https://doi.org/10.1038/nature17195
630	
631	Yienger, J. J. (1999). Correction to "An evaluation of chemistry's role in the winter-spring ozone
632	maximum found in the northern midlatitude free troposphere" by J. J. Yienger et al. Journal
633	of Geophysical Research, 104(D7), 8329.
634	Zetzsch, C., & Behnke, W. (1992). Heterogeneous Photochemical Sources of Atomic Cl in the
635	Troposphere. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 96(3), 488–493.
636	https://doi.org/10.1002/bbpc.19920960351
637	
638	Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Stevens, P. S. (2011).
639	Nitric acid photolysis on forest canopy surface as a source for tropospheric nitrous acid.

Nature Geoscience, 4, 440. Retrieved from <u>https://doi.org/10.1038/ngeo1164</u>

Figure 1. Top panels: evolution of nitrogen oxide reservoirs downwind of New York City observed aboard the NSF/NCAR C-130 aircraft during Research Flight 3 (RF; February 7, 2015) of the WINTER campaign. Observations are from below 2 km altitude only, and correspond to 7pm to 11pm local time. NO_Y represents the sum of all forms of oxidized nitrogen that can be converted to NO at high temperatures (a) NO₂ represents the sum of all oxidized nitrogen species expect for NO_x (NO + NO₂) and is derived from the measured NOy – NO_x (b). The gap between total NO₂ and the sum of individual components that occurs near to NYC, while within the total calibration uncertainty of the sum, can likely be explained by a combination of pNO₃⁻ and peroxynitrates (see SI). (c) map of the flight track colored and sized by the measured mixing ratio of ClNO₂. The nearly straight trajectory between points A through F consisted of periodic ascents and descents of the aircraft between 500 and 2000 m altitude, profiling the vertical extent of the polluted atmospheric boundary layer. Pie charts show the observationally constrained contributions of different radical precursors to the integrated daytime radical source (see text).

Figure 2. (a) Flight track of the NSF/NCAR C-130 on Research Flight 8 of the WINTER campaign, colored by local time of day. Sunrise occurred at approximately 6:30 AM local time. Only portions with altitudes <2000 m are shown. (b) Vertical profiles of the instantaneous radical source calculated from observations of solar radiation and radical precursors. (c) Time series of the instantaneous radical source (left axis, stacked color), CINO₂ mixing ratios (right axis, ppb), and the O₃ photolysis frequency (orange circles, right axis, 10⁻⁵ s⁻¹)

718 Data are binned as a function of observed NO_x mixing ratios with lower values indicating less polluted air

and higher values indicating more polluted air. In the left pane, we show only daytime observations over land, as these better reflect a well-mixed polluted boundary layer. For comparison, we show estimates

720 based on nighttime observations within the MBL in the right panel. These two regimes are a fair representation of the typical importance of each radical source over the entire data set. See SI for additional statistics and calculations).

Figure 5. Relative changes in GEOS-Chem model predicted sulfate, SOA, NOx and PAN abundances between runs using standard emissions and chemistry, and those using updated emissions of HCHO and CINO₂ chemistry based on the WINTER observations. Enhanced oxidative capacity in the boundary layer from enhanced HCHO (over land) and CINO₂ (in the MBL) leads to increased conversion of SO₂ to sulfate aerosol mass, VOC to secondary organic aerosol mass, and increased conversion of NO_x into reservoirs such as PAN which in turn affects its global distribution.