461 research outputs found
Diffusion in Stationary Flow from Mesoscopic Non-equilibrium Thermodynamics
We analyze the diffusion of a Brownian particle in a fluid under stationary
flow. By using the scheme of non-equilibrium thermodynamics in phase space, we
obtain the Fokker-Planck equation which is compared with others derived from
kinetic theory and projector operator techniques. That equation exhibits
violation of the fluctuation dissipation-theorem. By implementing the
hydrodynamic regime described by the first moments of the non-equilibrium
distribution, we find relaxation equations for the diffusion current and
pressure tensor, allowing us to arrive at a complete description of the system
in the inertial and diffusion regimes. The simplicity and generality of the
method we propose, makes it applicable to more complex situations, often
encountered in problems of soft condensed matter, in which not only one but
more degrees of freedom are coupled to a non-equilibrium bath.Comment: 10 pages, accepted in Phys. Rev.
Diffusion in Stationary Flow from Mesoscopic Non-equilibrium Thermodynamics
We analyze the diffusion of a Brownian particle in a fluid under stationary
flow. By using the scheme of non-equilibrium thermodynamics in phase space, we
obtain the Fokker-Planck equation which is compared with others derived from
kinetic theory and projector operator techniques. That equation exhibits
violation of the fluctuation dissipation-theorem. By implementing the
hydrodynamic regime described by the first moments of the non-equilibrium
distribution, we find relaxation equations for the diffusion current and
pressure tensor, allowing us to arrive at a complete description of the system
in the inertial and diffusion regimes. The simplicity and generality of the
method we propose, makes it applicable to more complex situations, often
encountered in problems of soft condensed matter, in which not only one but
more degrees of freedom are coupled to a non-equilibrium bath.Comment: 10 pages, accepted in Phys. Rev.
Slow relaxations and history dependence of the transport properties of layered superconductors
We study numerically the time evolution of the transport properties of
layered superconductors after different preparations. We show that, in
accordance with recent experiments in BSCCO performed in the second peak region
of the phase diagram (Portier et al, 2001), the relaxation strongly depends on
the initial conditions and is extremely slow. We investigate the dependence on
the pinning center density and the perturbation applied. We compare the
measurements to recent findings in tapped granular matter and we interpret our
results with a rather simple picture.Comment: 4 pages, 4 fig
Astronomical Distance Determination in the Space Age: Secondary Distance Indicators
The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
Final analysis from RESONATE: Up to six years of follow‐up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma
Ibrutinib, a once‐daily oral inhibitor of Bruton's tyrosine kinase, is approved in the United States and Europe for treatment of patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). The phase 3 RESONATE study showed improved efficacy of single‐agent ibrutinib over ofatumumab in patients with relapsed/refractory CLL/SLL, including those with high‐risk features. Here we report the final analysis from RESONATE with median follow‐up on study of 65.3 months (range, 0.3‐71.6) in the ibrutinib arm. Median progression‐free survival (PFS) remained significantly longer for patients randomized to ibrutinib vs ofatumumab (44.1 vs 8.1 months; hazard ratio [HR]: 0.148; 95% confidence interval [CI]: 0.113‐0.196; P˂.001). The PFS benefit with ibrutinib vs ofatumumab was preserved in the genomic high‐risk population with del(17p), TP53 mutation, del(11q), and/or unmutated IGHV status (median PFS 44.1 vs 8.0 months; HR: 0.110; 95% CI: 0.080‐0.152), which represented 82% of patients. Overall response rate with ibrutinib was 91% (complete response/complete response with incomplete bone marrow recovery, 11%). Overall survival, censored for crossover, was better with ibrutinib than ofatumumab (HR: 0.639; 95% CI: 0.418‐0.975). With up to 71 months (median 41 months) of ibrutinib therapy, the safety profile remained consistent with prior reports; cumulatively, all‐grade (grade ≥3) hypertension and atrial fibrillation occurred in 21% (9%) and 12% (6%) of patients, respectively. Only 16% discontinued ibrutinib because of adverse events (AEs). These long‐term results confirm the robust efficacy of ibrutinib in relapsed/refractory CLL/SLL irrespective of high‐risk clinical or genomic features, with no unexpected AEs. This trial is registered at www.clinicaltrials.gov (NCT01578707)
Spectroscopic observations of sn 2012fr: A luminous, normal type Ia supernova with early high-velocity features and a late velocity plateau
We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si lambda 6355 line that can be cleanly decoupled from the lower velocity 'photospheric' component. This Si lambda 6355 HVF fades by phase - 5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of similar to 12,000 km s(-1) until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v approximate to 12,000 km s(-1) with narrow line width and long velocity plateau, as well as an HVF beginning at v approximate to 31,000 km s(-1) two weeks before maximum. SN 2012fr resides on the border between the 'shallow silicon' and 'core-normal' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the 'low velocity gradient' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia
The type II-plateau supernova 2017eaw in NGC 6946 and its red supergiant progenitor
We present extensive optical photometric and spectroscopic observations, from 4 to 482 days after explosion, of the Type II-plateau (II-P) supernova (SN) 2017eaw in NGC 6946. SN 2017eaw is a normal SN II-P intermediate in properties between, for example, SN 1999em and SN 2012aw and the more luminous SN 2004et, also in NGC 6946. We have determined that the extinction to SN 2017eaw is primarily due to the Galactic foreground and that the SN site metallicity is likely subsolar. We have also independently confirmed a tip-of-the-red-giant-branch (TRGB) distance to NGC 6946 of 7.73 ± 0.78 Mpc. The distances to the SN that we have also estimated via both the standardized candle method and expanding photosphere method corroborate the TRGB distance. We confirm the SN progenitor identity in pre-explosion archival Hubble Space Telescope (HST) and Spitzer Space Telescope images, via imaging of the SN through our HST Target of Opportunity program. Detailed modeling of the progenitor's spectral energy distribution indicates that the star was a dusty, luminous red supergiant consistent with an initial mass of ~15 M ⊙
- …
