592 research outputs found
Racism and radicalisation in Denmark: outline for a social pedagogical prevention model
This article focuses on social pedagogical work with young people from minority ethnic communities who are at risk of becoming radicalised. The aim is to contribute to the further qualification of general social pedagogical work, so that radicalisation and extremism can be more effectively prevented. In Denmark there has been an increased focus on radicalisation and extremism in recent decades. Radicalisation is often characterised as a process where extremist attitudes develop before an act of violence takes place. It is a politically charged subject with a series of discourses that link radicalisation with parallel societies and a lack of integration. The prevailing discourse often portrays ethnic minorities as living in ethnic enclaves that are isolated from the majority of society, where they reproduce their religious and cultural values which can lead to a form of radicalisation and a threat to the national social cohesion. One profession that engages with this topic is social pedagogy, which aims to intervene in such situations. However, we are far from seeing social pedagogy succeeding in this intention. In practice, many social pedagogical initiatives take an individualising and disciplinary approach and are therefore ineffective solutions to young peopleâs challenges. In this article, we first analyse the dominant political discourse on ethnic minorities and connect it to the Danish governmentâs various action plans against radicalisation and extremism. We then discuss the implications of European and Danish prevention work against radicalisation and raise a criticism of this work for its individualising, disciplinary and uncritical nature. We highlight the need for a community-oriented approach to prevention work, where the cornerstones are involvement, network building and critical insight
GPU-Accelerated Large-Eddy Simulation of Turbulent Channel Flows
High performance computing clusters that are augmented with cost and power efficient graphics processing unit (GPU) provide new opportunities to broaden the use of large-eddy simulation technique to study high Reynolds number turbulent flows in fluids engineering applications. In this paper, we extend our earlier work on multi-GPU acceleration of an incompressible Navier-Stokes solver to include a large-eddy simulation (LES) capability. In particular, we implement the Lagrangian dynamic subgrid scale model and compare our results against existing direct numerical simulation (DNS) data of a turbulent channel flow at ReÏ = 180. Overall, our LES results match fairly well with the DNS data. Our results show that the ReÏ = 180 case can be entirely simulated on a single GPU, whereas higher Reynolds cases can benefit from a GPU cluster
An Effective-Medium Tight-Binding Model for Silicon
A new method for calculating the total energy of Si systems is presented. The
method is based on the effective-medium theory concept of a reference system.
Instead of calculating the energy of an atom in the system of interest a
reference system is introduced where the local surroundings are similar. The
energy of the reference system can be calculated selfconsistently once and for
all while the energy difference to the reference system can be obtained
approximately. We propose to calculate it using the tight-binding LMTO scheme
with the Atomic-Sphere Approximation(ASA) for the potential, and by using the
ASA with charge-conserving spheres we are able to treat open system without
introducing empty spheres. All steps in the calculational method is {\em ab
initio} in the sense that all quantities entering are calculated from first
principles without any fitting to experiment. A complete and detailed
description of the method is given together with test calculations of the
energies of phonons, elastic constants, different structures, surfaces and
surface reconstructions. We compare the results to calculations using an
empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-
Deglacial mesophotic reef demise on the Great Barrier Reef
Submerged reefs are important recorders of palaeo-environments and sea-level change, and provide a substrate for modem mesophotic (deep-water, light-dependent) coral communities. Mesophotic reefs are rarely, if ever, described from the fossil record and nothing is known of their long-term record on Great Barrier Reef (GBR). Sedimentological and palaeo-ecological analyses coupled with 67 C-14 AMS and U-Th radiometric dates from dredged coral, algae and btyozoan specimens, recovered from depths of 45 to 130 m, reveal two distinct generations of fossil mesophotic coral community development on the submerged shelf edge reefs of the GBR. They occurred from 13 to 10 ka and 8 ka to present. We identified eleven sedimentary fades representing both autochthonous (in situ) and allochthonous (detrital) genesis, and their palaeo-environmental settings have been interpreted based on their sedimentological characteristics, biological assemblages, and the distribution of similar modern biota within the dredges. Facies on the shelf edge represent deep sedimentary environments, primarily forereef slope and open platform settings in palaeo-water depths of 45-95 m. Two coral-algal assemblages and one non-coral encruster assemblage were identified: 1) Massive and tabular corals including Porites, Montipora and faviids associated with Lithophylloids and minor Mastophoroids, 2) platy and encrusting corals including Porites, Montipora and Pachyseris associated with melobesioids and Sporolithon, and 3) Melobesiods and Sporolithon with acervulinids (foraminifera) and bryozoans. Based on their modem occurrence on the GBR and Coral Sea and modem specimens collected in dredges, these are interpreted as representing palaeo-water depths of 100 m respectively. The first mesophotic generation developed at modern depths of 85-130 m from 13 to 10.2 ka and exhibit a deepening succession of 100 m palaeo-water depth through time. The second generation developed at depths of 45-70 m on the shelf edge from 7.8 ka to present and exhibit stable environmental conditions through time. The apparent hiatus that interrupted the mesophotic coral communities coincided with the timing of modem reef initiation on the GBR as well as a wide-spread flux of siliciclastic sediments from the shelf to the basin. For the first time we have observed the response of mesophotic reef communities to millennial scale environmental perturbations, within the context of global sea-level rise and environmental changes. © 2013, Elsevier Ltd
Spanning forests and the q-state Potts model in the limit q \to 0
We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta
J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially,
this limit gives rise to the generating polynomial of spanning forests;
physically, it provides information about the Potts-model phase diagram in the
neighborhood of (q,v) = (0,0). We have studied this model on the square and
triangular lattices, using a transfer-matrix approach at both real and complex
values of w. For both lattices, we have computed the symbolic transfer matrices
for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves
of partition-function zeros in the complex w-plane. For real w, we find two
distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp.
w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w >
w_0 we find a non-critical disordered phase, while for w < w_0 our results are
compatible with a massless Berker-Kadanoff phase with conformal charge c = -2
and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w =
w_0 we find a "first-order critical point": the first derivative of the free
energy is discontinuous at w_0, while the correlation length diverges as w
\downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0
seems to be the same for both lattices and it differs from that of the
Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1,
the leading thermal scaling dimension is x_{T,1} = 0, and the critical
exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65
Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and
forests_tri_2-9P.m. Final journal versio
Balanced harvest: concept, policies, evidence, and management implications
Balanced harvest has been proposed to reduce fishing impact on ecosystems while simultaneously maintaining or even increasing fishery yield. The concept has attracted broad interest, but also received criticisms. In this paper, we examine the theory, modelling studies, empirical evidence, the legal and policy frameworks, and management implications of balanced harvest. The examination reveals unresolved issues and challenges from both scientific and management perspectives. We summarize current knowledge and address common questions relevant to the idea. Major conclusions include: balanced harvest can be expressed in several ways and implemented on multiple levels, and with different approaches e.g. mĂ©tier based management; it explicitly bridges fisheries and conservation goals in accordance with international legal and policy frameworks; modelling studies and limited empirical evidence reveal that balanced harvest can reduce fishing impact on ecosystem structure and increase the aggregate yield; the extent of balanced harvest is not purely a scientific question, but also a legal and social choice; a transition to balanced harvest may incur short-term economic costs, while in the long-term, economic results will vary across individual fisheries and for society overall; for its application, balanced harvest can be adopted at both strategic and tactical levels and need not be a full implementation, but could aim for a âpartially-balancedâ harvest. Further objective discussions and research on this subject are needed to move balanced harvest toward supporting a practical ecosystem approach to fisheries
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
Intraâclinothem variability in sedimentary texture and process regime recorded down slope profiles
Shelfâmargin clinothem successions can archive process interactions at the shelf to slope transition, and their architecture provides constraints on the interplay of factors that control basinâmargin evolution. However, detailed textural analysis and facies distributions from shelf to slope transitions remain poorly documented. This study uses quantitative grainâsize and sorting data from coeval shelf and slope deposits of a single clinothem that crops out along a 5 km long, dipâparallel transect of the Eocene Sobrarbe Deltaic Complex (Ainsa Basin, southâcentral Pyrenees, Spain). Systematic sampling of sandstone beds tied to measured sections has captured vertical and basinward changes in sedimentary texture and facies distributions at an intraâclinothem scale. Two types of hyperpycnal flowârelated slope deposits, both rich in mica and terrestrial organic matter, are differentiated according to grain size, sorting and bed geometry: (i) sustained hyperpycnal flow deposits, which are physically linked to coarse channelized sediments in the shelf setting and which deposit sand down the complete slope profile; (ii) episodic hyperpycnal flow deposits, which are disconnected from, and incise into, shelf sands and which are associated with sediment bypass of the proximal slope and coarseâgrained sand deposition on the medial and distal slope. Both types of hyperpycnites are interbedded with relatively homogenous, organicâfree and micaâfree, wellâsorted, very fineâgrained sandstones, which are interpreted to be remobilized from waveâdominated shelf environments; these waveâdominated deposits are found only on the proximal and medial slope. Coarseâgrained sediment bypass into the deeperâwater slope settings is therefore dominated by episodic hyperpycnal flows, whilst sustained hyperpycnal flows and turbidity currents remobilizing waveâdominated shelf deposits are responsible for the full range of grain sizes in the proximal and medial slope, thus facilitating clinoform progradation. This novel dataset highlights previously undocumented intraâclinothem variability related to updip changes in the shelf processâregime, which is therefore a key factor controlling downdip architecture and resulting sedimentary texture
- âŠ