196 research outputs found

    Developing Non-Laboratory Cardiovascular Risk Assessment Charts and Validating Laboratory and Non-Laboratory-Based Models.

    Get PDF
    BACKGROUND: Developing simplified risk assessment model based on non-laboratory risk factors that could determine cardiovascular risk as accurately as laboratory-based one can be valuable, particularly in developing countries where there are limited resources. OBJECTIVE: To develop a simplified non-laboratory cardiovascular disease risk assessment chart based on previously reported laboratory-based chart and evaluate internal and external validation, and recalibration of both risk models to assess the performance of risk scoring tools in other population. METHODS: A 10-year non-laboratory-based risk prediction chart was developed for fatal and non-fatal CVD using Cox Proportional Hazard regression. Data from the Isfahan Cohort Study (ICS), a population-based study among 6504 adults aged ≥ 35 years, followed-up for at least ten years was used for the non-laboratory-based model derivation. Participants were followed up until the occurrence of CVD events. Tehran Lipid and Glucose Study (TLGS) data was used to evaluate the external validity of both non-laboratory and laboratory risk assessment models in other populations rather than one used in the model derivation. RESULTS: The discrimination and calibration analysis of the non-laboratory model showed the following values of Harrell's C: 0.73 (95% CI 0.71-0.74), and Nam-D'Agostino χ2:11.01 (p = 0.27), respectively. The non-laboratory model was in agreement and classified high risk and low risk patients as accurately as the laboratory one. Both non-laboratory and laboratory risk prediction models showed good discrimination in the external validation, with Harrell's C of 0.77 (95% CI 0.75-0.78) and 0.78 (95% CI 0.76-0.79), respectively. CONCLUSIONS: Our simplified risk assessment model based on non-laboratory risk factors could determine cardiovascular risk as accurately as laboratory-based one. This approach can provide simple risk assessment tool where laboratory testing is unavailable, inconvenient, and costly

    Surveillance, Diversity and Vegetative Compatibility Groups of Fusarium oxysporum f. sp. vasinfectum Collected in Cotton Fields in Australia (2017 to 2022)

    Get PDF
    Cotton (Gossypium hirsutum) is a billion-dollar crop in regional New South Wales (NSW) and Queensland, Australia. Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is an economically important disease. Initial disease losses of up to 90% when the disease was first detected resulted in fields being taken out of cotton production. The disease is now well-managed due to the adoption of highly resistant varieties. However, annual disease surveys recently revealed that the disease dynamic has changed in the past few seasons. With relatively mild and wet weather conditions during the 2021/22 growing season, FW was detected in eight surveyed valleys in NSW and Queensland, with the disease incidence as high as 44.5% and 98.5% in individual fields in early and late seasons, respectively. Fov is genetically distinct and evolved from local Fusarium oxysporum strains. Additionally, the pathogen was reported to evolve rapidly under continuous cotton cropping pressure. However, our knowledge of the genetic composition of the prevailing population is limited. Sequences of the translation elongation factor alpha 1 (TEF1) revealed that 94% of Fusarium isolates recovered from FW-infected cotton were clustered together with known Australian Fov and relatively distant related to overseas Fov races. All these isolates, except for nine, were further confirmed positive with a specific marker based on the Secreted in Xylem 6 (SIX6) effector gene. Vegetative compatibility group (VCG) analyses of 166 arbitrarily selected isolates revealed a predominance of VCG01111. There was only one detection of VCG01112 in the Border Rivers valley where it was first described. In this study, the exotic Californian Fov race 4 strain was not detected using a specific marker based on the unique Tfo1 insertion in the phosphate (PHO) gene. This study indicated that the prevalence and abundance of Fov across NSW and Queensland in the past five seasons was probably independent of its genetic diversity

    The Antarctic Submillimeter Telescope and Remote Observatory (AST/RO)

    Get PDF
    AST/RO, a 1.7 m diameter telescope for astronomy and aeronomy studies at wavelengths between 200 and 2000 microns, was installed at the South Pole during the 1994-1995 Austral summer. The telescope operates continuously through the Austral winter, and is being used primarily for spectroscopic studies of neutral atomic carbon and carbon monoxide in the interstellar medium of the Milky Way and the Magellanic Clouds. The South Pole environment is unique among observatory sites for unusually low wind speeds, low absolute humidity, and the consistent clarity of the submillimeter sky. Four heterodyne receivers, an array receiver, three acousto-optical spectrometers, and an array spectrometer are installed. A Fabry-Perot spectrometer using a bolometric array and a Terahertz receiver are in development. Telescope pointing, focus, and calibration methods as well as the unique working environment and logistical requirements of the South Pole are described.Comment: 57 pages, 15 figures. Submitted to PAS

    RNAi-Mediated Knock-Down of Arylamine N-acetyltransferase-1 Expression Induces E-cadherin Up-Regulation and Cell-Cell Contact Growth Inhibition

    Get PDF
    Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in cell morphology that was accompanied by an increase in cell-cell contact growth inhibition and a loss of cell viability at confluence. NAT1 knock-down also led to attenuation in anchorage independent growth in soft agar. Loss of NAT1 led to the up-regulation of E-cadherin mRNA and protein levels. This change in E-cadherin was not attributed to RNAi off-target effects and was also observed in the prostate cancer cell-line 22Rv1. In vivo, NAT1 knock-down cells grew with a longer doubling time compared to cells stably transfected with a scrambled RNAi or to parental HT-29 cells. This study has shown that NAT1 affects cell growth and morphology. In addition, it suggests that NAT1 may be a novel drug target for cancer therapeutics

    Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function

    Get PDF
    Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of l

    The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes

    Get PDF
    Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

    Get PDF
    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation
    corecore