318 research outputs found

    Update to the Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) protocol: statistical analysis plan for a prospective, multicenter, double-blind, adaptive sample size, randomized, placebo-controlled, clinical trial.

    Get PDF
    BACKGROUND: Observational research suggests that combined therapy with Vitamin C, thiamine and hydrocortisone may reduce mortality in patients with septic shock. METHODS AND DESIGN: The Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) trial is a multicenter, double-blind, adaptive sample size, randomized, placebo-controlled trial designed to test the efficacy of combination therapy with vitamin C (1.5 g), thiamine (100 mg), and hydrocortisone (50 mg) given every 6 h for up to 16 doses in patients with respiratory or circulatory dysfunction (or both) resulting from sepsis. The primary outcome is ventilator- and vasopressor-free days with mortality as the key secondary outcome. Recruitment began in August 2018 and is ongoing; 501 participants have been enrolled to date, with a planned maximum sample size of 2000. The Data and Safety Monitoring Board reviewed interim results at N = 200, 300, 400 and 500, and has recommended continuing recruitment. The next interim analysis will occur when N = 1000. This update presents the statistical analysis plan. Specifically, we provide definitions for key treatment and outcome variables, and for intent-to-treat, per-protocol, and safety analysis datasets. We describe the planned descriptive analyses, the main analysis of the primary end point, our approach to secondary and exploratory analyses, and handling of missing data. Our goal is to provide enough detail that our approach could be replicated by an independent study group, thereby enhancing the transparency of the study. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03509350. Registered on 26 April 2018

    Questioning the rise of gelatinous zooplankton in the World's oceans

    Get PDF
    During the past several decades, high numbers of gelatinous zooplankton species have been reported in many estuarine and coastal ecosystems. Coupled with media-driven public perception, a paradigm has evolved in which the global ocean ecosystems are thought to be heading toward being dominated by “nuisance” jellyfish. We question this current paradigm by presenting a broad overview of gelatinous zooplankton in a historicalcontext to develop the hypothesis that population changes reflect the human-mediated alteration of global ocean ecosystems. To this end, we synthesize information related to the evolutionary context of contemporary gelatinous zooplankton blooms, the human frame of reference forchanges in gelatinous zooplankton populations, and whether sufficient data are available to have established the paradigm. We conclude that the current paradigm in which it is believed that there has been a global increase in gelatinous zooplankton is unsubstantiated, and we develop a strategy for addressing the critical questions about long-term, human-related changes in the sea as they relate to gelatinous zooplankton blooms

    Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) study

    Get PDF
    Background: Multiple genome-wide association studies (GWAS) within European populations have implicated common genetic variants associated with insulin and glucose concentrations. In contrast, few studies have been conducted within minority groups, which carry the highest burden of impaired glucose homeostasis and type 2 diabetes in the U.S. Methods: As part of the 'Population Architecture using Genomics and Epidemiology (PAGE) Consortium, we investigated the association of up to 10 GWAS-identified single nucleotide polymorphisms (SNPs) in 8 genetic regions with glucose or insulin concentrations in up to 36,579 non-diabetic subjects including 23,323 European Americans (EA) and 7,526 African Americans (AA), 3,140 Hispanics, 1,779 American Indians (AI), and 811 Asians. We estimated the association between each SNP and fasting glucose or log-transformed fasting insulin, followed by meta-analysis to combine results across PAGE sites. Results: Overall, our results show that 9/9 GWAS SNPs are associated with glucose in EA (p = 0.04 to 9 × 10-15), versus 3/9 in AA (p= 0.03 to 6 × 10-5), 3/4 SNPs in Hispanics, 2/4 SNPs in AI, and 1/2 SNPs in Asians. For insulin we observed a significant association with rs780094/GCKR in EA, Hispanics and AI only. Conclusions: Generalization of results across multiple racial/ethnic groups helps confirm the relevance of some of these loci for glucose and insulin metabolism. Lack of association in non-EA groups may be due to insufficient power, or to unique patterns of linkage disequilibrium

    Sodium Selenide Toxicity Is Mediated by O2-Dependent DNA Breaks

    Get PDF
    Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H2Se/HSe−/Se2−). Among the genes whose deletion caused hypresensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The •OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O2-dependent radical-based mechanism

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Scientific concepts and methods for moving persistence assessments into the 21st century

    Get PDF
    34 páginas.- 2 figuras.- 3 tablas.- 225 referenciasThe evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;1–34. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).Peer reviewe

    Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eukaryotic and prokaryotic cells, homologous recombination is an accurate mechanism to generate genetic diversity, and it is also used to repair DNA double strand-breaks. <it>RAD52 </it>epistasis group genes involved in recombinational DNA repair, including <it>mre11, rad50, nsb1/xrs2, rad51, rad51c/rad57, rad51b/rad55, rad51d, xrcc2, xrcc3, rad52, rad54, rad54b/rdh54 </it>and <it>rad59 </it>genes, have been studied in human and yeast cells. Notably, the RAD51 recombinase catalyses strand transfer between a broken DNA and its undamaged homologous strand, to allow damaged region repair. In protozoan parasites, homologous recombination generating antigenic variation and genomic rearrangements is responsible for virulence variation and drug resistance. However, in <it>Entamoeba histolytica </it>the protozoan parasite responsible for human amoebiasis, DNA repair and homologous recombination mechanisms are still unknown.</p> <p>Results</p> <p>In this paper, we initiated the study of the mechanism for DNA repair by homologous recombination in the primitive eukaryote <it>E. histolytica </it>using UV-C (150 J/m<sup>2</sup>) irradiated trophozoites. DNA double strand-breaks were evidenced in irradiated cells by TUNEL and comet assays and evaluation of the EhH2AX histone phosphorylation status. In <it>E. histolytica </it>genome, we identified genes homologous to yeast and human RAD52 epistasis group genes involved in DNA double strand-breaks repair by homologous recombination. Interestingly, the <it>E. histolytica </it>RAD52 epistasis group related genes were differentially expressed before and after UV-C treatment. Next, we focused on the characterization of the putative recombinase EhRAD51, which conserves the typical architecture of RECA/RAD51 proteins. Specific antibodies immunodetected EhRAD51 protein in both nuclear and cytoplasmic compartments. Moreover, after DNA damage, EhRAD51 was located as typical nuclear <it>foci</it>-like structures in <it>E. histolytica </it>trophozoites. Purified recombinant EhRAD51 exhibited DNA binding and pairing activities and exchanging reactions between homologous strands <it>in vitro</it>.</p> <p>Conclusion</p> <p><it>E. histolytica </it>genome contains most of the RAD52 epistasis group related genes, which were differentially expressed when DNA double strand-breaks were induced by UV-C irradiation. In response to DNA damage, EhRAD51 protein is overexpressed and relocalized in nuclear <it>foci</it>-like structures. Functional assays confirmed that EhRAD51 is a <it>bonafide </it>recombinase. These data provided the first insights about the potential roles of the <it>E. histolytica </it>RAD52 epistasis group genes and EhRAD51 protein function in DNA damage response of this ancient eukaryotic parasite.</p

    The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)

    Get PDF
    The 2016 Mars Utah Rover Field Investigation (MURFI) was a Mars rover field trial run by the UK Space Agency in association with the Canadian Space Agency's 2015/2016 Mars Sample Return Analogue Deployment mission. MURFI had over 50 participants from 15 different institutions around the UK and abroad. The objectives of MURFI were to develop experience and leadership within the UK in running future rover field trials; to prepare the UK planetary community for involvement in the European Space Agency/Roscosmos ExoMars 2020 rover mission; and to assess how ExoMars operations may differ from previous rover missions. Hence, the wider MURFI trial included a ten-day (or ten-‘sol’) ExoMars rover-like simulation. This comprised an operations team and control centre in the UK, and a rover platform in Utah, equipped with instruments to emulate the ExoMars rovers remote sensing and analytical suite. The operations team operated in ‘blind mode’, where the only available data came from the rover instruments, and daily tactical planning was performed under strict time constraints to simulate real communications windows. The designated science goal of the MURFI ExoMars rover-like simulation was to locate in-situ bedrock, at a site suitable for sub-surface core-sampling, in order to detect signs of ancient life. Prior to “landing”, the only information available to the operations team were Mars-equivalent satellite remote sensing data, which were used for both geologic and hazard (e.g., slopes, loose soil) characterisation of the area. During each sol of the mission, the operations team sent driving instructions and imaging/analysis targeting commands, which were then enacted by the field team and rover-controllers in Utah. During the ten-sol mission, the rover drove over 100 m and obtained hundreds of images and supporting observations, allowing the operations team to build up geologic hypotheses for the local area and select possible drilling locations. On sol 9, the team obtained a subsurface core sample that was then analyzed by the Raman spectrometer. Following the conclusion of the ExoMars-like component of MURFI, the operations and field team came together to evaluate the successes and failures of the mission, and discuss lessons learnt for ExoMars rover and future field trials. Key outcomes relevant to ExoMars rover included a key recognition of the importance of field trials for (i) understanding how to operate the ExoMars rover instruments as a suite, (ii) building an operations planning team that can work well together under strict time-limited pressure, (iii) developing new processes and workflows relevant to the ExoMars rover, (iv) understanding the limits and benefits of satellite mapping and (v) practicing efficient geological interpretation of outcrops and landscapes from rover-based data, by comparing the outcomes of the simulated mission with post-trial, in-situ field observations. In addition, MURFI was perceived by all who participated as a vital learning experience, especially for early and mid-career members of the team, and also demonstrated the UK capability of implementing a large rover field trial. The lessons learnt from MURFI are therefore relevant both to ExoMars rover, and to future rover field trials
    corecore