2,701 research outputs found
Probing the phase diagram of CeRu_2Ge_2 by thermopower at high pressure
The temperature dependence of the thermoelectric power, S(T), and the
electrical resistivity of the magnetically ordered CeRu_2Ge_2 (T_N=8.55 K and
T_C=7.40 K) were measured for pressures p < 16 GPa in the temperature range 1.2
K < T < 300 K. Long-range magnetic order is suppressed at a p_c of
approximately 6.4 GPa. Pressure drives S(T) through a sequence of temperature
dependences, ranging from a behaviour characteristic for magnetically ordered
heavy fermion compounds to a typical behaviour of intermediate-valent systems.
At intermediate pressures a large positive maximum develops above 10 K in S(T).
Its origin is attributed to the Kondo effect and its position is assumed to
reflect the Kondo temperature T_K. The pressure dependence of T_K is discussed
in a revised and extended (T,p) phase diagram of CeRu_2Ge_2.Comment: 7 pages, 6 figure
Strain enhancement of superconductivity in CePd2Si2 under pressure
We report resistivity and calorimetric measurements on two single crystals of
CePd2Si2 pressurized up to 7.4 GPa. A weak uniaxial stress induced in the
pressure cell demonstrates the sensitivity of the physics to anisotropy. Stress
applied along the c-axis extends the whole phase diagram to higher pressures
and enhances the superconducting phase emerging around the magnetic
instability, with a 40% increase of the maximum superconducting temperature,
Tc, and a doubled pressure range. Calorimetric measurements demonstrate the
bulk nature of the superconductivity.Comment: 4 pages, 4 figure
Anisotropy, disorder, and superconductivity in CeCu2Si2 under high pressure
Resistivity measurements were carried out up to 8 GPa on single crystal and
polycrystalline samples of CeCu2Si2 from differing sources in the homogeneity
range. The anisotropic response to current direction and small uniaxial
stresses was explored, taking advantage of the quasi-hydrostatic environment of
the Bridgman anvil cell. It was found that both the superconducting transition
temperature Tc and the normal state properties are very sensitive to uniaxial
stress, which leads to a shift of the valence instability pressure Pv and a
small but significant change in Tc for different orientations with respect to
the tetragonal c-axis. Coexistence of superconductivity and residual
resistivity close to the Ioffe-Regel limit around 5 GPa provides a compelling
argument for the existence of a valence-fluctuation mediated pairing
interaction at high pressure in CeCu2Si2.Comment: 12 pages, 7 figure
High pressure study of the organic compound (TMTTF)2BF4
High pressure resistivity measurements of the organic compound (TMTTF)2BF4 have been performed in a newly developped Bridgman cell providing good pressure conditions on a wide pressure range. For the first time in this compound a zero resistance superconducting state is observed between 3 and 4 GPa. At temperatures above the superconducting transition, the resistivities of the two high quality samples show a different behavior. One sample, provides indications for a magnetic quantum critical point at the maximum of Tc, whereas in the other antiferromagnetic spin-fluctuations are present above T
Heavy Fermion superconductor CeCuSi under high pressure: multiprobing the valence crossover
The first heavy fermion superconductor CeCuSi has not revealed all
its striking mysteries yet. At high pressures, superconductivity is supposed to
be mediated by valence fluctuations, in contrast to ambient pressure, where
spin fluctuations most likely act as pairing glue. We have carried out a
multiprobe (electric transport, thermopower, ac specific heat, Hall and Nernst
effects) experiment up to on a high quality CeCuSi
single crystal. Reliable resistivity data reveal for the first time a scaling
behavior close to the supposed valence transition, and allow to locate the
critical end point at and a slightly negative
temperature. In the same pressure region, remarkable features have also been
detected in the other physical properties, acting as further signatures of the
Ce valence crossover and the associated critical fluctuations.Comment: 13 pages, 14 figure
Non-luminescent disexcitation of F-center pairs by exchange-softened vibrational modes
The non-luminescent and spin-dependent disexcitation process observed in F-center pairs in alkali halides at low temperature is explained by a covalent bond within the pair. Exchange effects give a negative contribution to the lattice potential energy. If the pair separataion is small, local modes become unstable and spontaneous lattice distortions bring back the pair in its ground state
Calorimetric Investigation of CeRu2Ge2 up to 8 GPa
We have developed a calorimeter able to give a qualitative picture of the
specific heat of a sample under high pressure up to approximately 10 GPa. The
principle of ac-calorimetry was adapted to the conditions in a high pressure
clamp. The performance of this technique was successfully tested with the
measurement of the specific heat of CeRu2Ge2 in the temperature range 1.5
K<T<12 K. The phase diagram of its magnetic phases is consistent with previous
transport measurements.Comment: 5 pages, 4 figure
High-pressure transport properties of CeRu_2Ge_2
The pressure-induced changes in the temperature-dependent thermopower S(T)
and electrical resistivity \rho(T) of CeRu_2Ge_2 are described within the
single-site Anderson model. The Ce-ions are treated as impurities and the
coherent scattering on different Ce-sites is neglected. Changing the
hybridisation \Gamma between the 4f-states and the conduction band accounts for
the pressure effect. The transport coefficients are calculated in the
non-crossing approximation above the phase boundary line. The theoretical S(T)
and \rho(T) curves show many features of the experimental data. The seemingly
complicated temperature dependence of S(T) and \rho(T), and their evolution as
a function of pressure, is related to the crossovers between various fixed
points of the model.Comment: 9 pages, 10 figure
Calorimetric and transport investigations of CePd_{2+x}Ge_{2-x} (x=0 and 0.02) up to 22 GPa
The influence of pressure on the magnetically ordered CePd_{2.02}Ge_{1.98}
has been investigated by a combined measurement of electrical resistivity,
, and ac-calorimetry, C(T), for temperatures in the range 0.3 K<T<10 K
and pressures, p, up to 22 GPa. Simultaneously CePd_2Ge_2 has been examined by
down to 40 mK. In CePd_{2.02}Ge_{1.98} and CePd_2Ge_2 the magnetic
order is suppressed at a critical pressure p_c=11.0 GPa and p_c=13.8 GPa,
respectively. In the case of CePd_{2.02}Ge_{1.98} not only the temperature
coefficient of , A, indicates the loss of magnetic order but also the
ac-signal recorded at low temperature. The residual
resistivity is extremely pressure sensitive and passes through a maximum and
then a minimum in the vicinity of p_c. The (T,p) phase diagram and the
A(p)-dependence of both compounds can be qualitatively understood in terms of a
pressure-tuned competition between magnetic order and the Kondo effect
according to the Doniach picture. The temperature-volume (T,V) phase diagram of
CePd_2Ge_2 combined with that of CePd_2Si_2 shows that in stoichiometric
compounds mainly the change of interatomic distances influences the exchange
interaction. It will be argued that in contrast to this the much lower
p_c-value of CePd_{2.02}Ge_{1.98} is caused by an enhanced hybridization
between 4f and conduction electrons.Comment: 9 pages, 7 figure
- …