896 research outputs found
VIABILITY, FATTY ACID COMPOSITION, AND STRUCTURE OF THE CORALLINE ALGA CORALLINA PILULIFERA
The decrease in the seaweed flora in some rocky areas, known as algal whitening or barren ground, is associated with some species of coralline algae. To determine the biological characteristics of a representative species of branched coralline alga, the number of medullary tiers was counted and ranged from 12 to 16. The 18S rDNA, psbA, and rbcL genes were used to confirm the identification of Corallina pilulifera. Measuring viability using triphenyl tetrazolium chloride showed highly viability from December to January. Cultural conditions of 16 C, 16 h light:8 h dark cycle, and 40 mu E m(-2) s(-1) light intensity were optimal for maintaining the viability of the coralline alga for up to three days. The fatty acids included 31.4% omega-3 eicosapentaenoic acid. Scanning electron microscopy of the surface structure revealed unique round wells about 7.9 +/- 1.3 mu m in diameter. The coralline alga, preventing fleshy seaweeds, may be used as a potential template for the creation of new environmentally friendly biomimetic antifouling material against the attachment of soft foulants, especially micro- and macroalgae.X111Ysciescopu
Noninjection Synthesis of CdS and Alloyed CdSxSe1âxNanocrystals Without Nucleation Initiators
CdS and alloyed CdSxSe1âx nanocrystals were prepared by a simple noninjection method without nucleation initiators. Oleic acid (OA) was used to stabilize the growth of the CdS nanocrystals. The size of the CdS nanocrystals can be tuned by changing the OA/Cd molar ratios. On the basis of the successful synthesis of CdS nanocrystals, alloyed CdSxSe1âx nanocrystals can also be prepared by simply replacing certain amount of S precursor with equal amount of Se precursor, verified by TEM, XRD, EDX as well as UVâVis absorption analysis. The optical properties of the alloyed CdSxSe1âx nanocrystals can be tuned by adjusting the S/Se feed molar ratios. This synthetic approach developed is highly reproducible and can be readily scaled up for potential industrial production
Defective Fluid Secretion from Submucosal Glands of Nasal Turbinates from CFTR-/- and CFTRÎF508/ÎF508 Pigs
Cystic fibrosis (CF), caused by reduced CFTR function, includes severe sinonasal disease which may predispose to lung disease. Newly developed CF pigs provide models to study the onset of CF pathophysiology. We asked if glands from pig nasal turbinates have secretory responses similar to those of tracheal glands and if CF nasal glands show reduced fluid secretion.Unexpectedly, we found that nasal glands differed from tracheal glands in five ways, being smaller, more numerous (density per airway surface area), more sensitive to carbachol, more sensitive to forskolin, and nonresponsive to Substance P (a potent agonist for pig tracheal glands). Nasal gland fluid secretion from newborn piglets (12 CF and 12 controls) in response to agonists was measured using digital imaging of mucus bubbles formed under oil. Secretion rates were significantly reduced in all conditions tested. Fluid secretory rates (Controls vs. CF, in pl/min/gland) were as follows: 3 ”M forskolin: 9.2±2.2 vs. 0.6±0.3; 1 ”M carbachol: 143.5±35.5 vs. 52.2±10.3; 3 ”M forskolin + 0.1 ”M carbachol: 25.8±5.8 vs. CF 4.5±0.9. We also compared CF(ÎF508/ÎF508) with CFTR(-/-) piglets and found significantly greater forskolin-stimulated secretion rates in the ÎF508 vs. the null piglets (1.4±0.8, nâ=â4 vs. 0.2±0.1, nâ=â7). An unexpected age effect was also discovered: the ratio of secretion to 3 ”M forskolin vs. 1 ”M carbachol was âŒ4 times greater in adult than in neonatal nasal glands.These findings reveal differences between nasal and tracheal glands, show defective fluid secretion in nasal glands of CF pigs, reveal some spared function in the ÎF508 vs. null piglets, and show unexpected age-dependent differences. Reduced nasal gland fluid secretion may predispose to sinonasal and lung infections
The K2K SciBar Detector
A new near detector, SciBar, for the K2K long-baseline neutrino oscillation
expe riment was installed to improve the measurement of neutrino energy
spectrum and to study neutrino interactions in the energy region around 1 GeV.
SciBar is a 'fully active' tracking detector with fine segmentation consisting
of plastic scintillator bars. The detector was constructed in summer 2003 and
is taking data since October 2003. The basic design and initial performance is
presented.Comment: 7 pages, 4figures, Contributed to Proceedings of the 10th Vienna
Conference on Instrumentation, Vienna, February 16-21, 200
Breathing silicon anodes for durable high-power operations
Silicon anode materials have been developed to achieve high capacity lithium ion batteries for operating smart phones and driving electric vehicles for longer time. Serious volume expansion induced by lithiation, which is the main drawback of silicon, has been challenged by multi-faceted approaches. Mechanically rigid and stiff polymers (e.g. alginate and carboxymethyl cellulose) were considered as the good choices of binders for silicon because they grab silicon particles in a tight and rigid way so that pulverization and then break-away of the active mass from electric pathways are suppressed. Contrary to the public wisdom, in this work, we demonstrate that electrochemical performances are secured better by letting silicon electrodes breathe in and out lithium ions with volume change rather than by fixing their dimensions. The breathing electrodes were achieved by using a polysaccharide (pullulan), the conformation of which is modulated from chair to boat during elongation. The conformational transition of pullulan was originated from its a glycosidic linkages while the conventional rigid polysaccharide binders have beta linkages.119201sciescopu
Single-Molecule Analysis Reveals the Kinetics and Physiological Relevance of MutL-ssDNA Binding
DNA binding by MutL homologs (MLH/PMS) during mismatch repair (MMR) has been considered based on biochemical and genetic studies. Bulk studies with MutL and its yeast homologs Mlh1-Pms1 have suggested an integral role for a single-stranded DNA (ssDNA) binding activity during MMR. We have developed single-molecule Förster resonance energy transfer (smFRET) and a single-molecule DNA flow-extension assays to examine MutL interaction with ssDNA in real time. The smFRET assay allowed us to observe MutL-ssDNA association and dissociation. We determined that MutL-ssDNA binding required ATP and was the greatest at ionic strength below 25 mM (KDâ=â29 nM) while it dramatically decreases above 100 mM (KD>2 ”M). Single-molecule DNA flow-extension analysis suggests that multiple MutL proteins may bind ssDNA at low ionic strength but this activity does not enhance stability at elevated ionic strengths. These studies are consistent with the conclusion that a stable MutL-ssDNA interaction is unlikely to occur at physiological salt eliminating a number of MMR models. However, the activity may infer some related dynamic DNA transaction process during MMR
CurrentâVoltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope
In this paper, we focus on currentâvoltage (IâV) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearIâVcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theIâVdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electronâelectron interaction in such quasi-1D systems with inhomogeneous nanostructures
CurrentâVoltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope
In this paper, we focus on currentâvoltage (IâV) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearIâVcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theIâVdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electronâelectron interaction in such quasi-1D systems with inhomogeneous nanostructures
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
- âŠ