127 research outputs found

    Response of Laser-Induced Thermal Lens Effect at Solid Surface

    Get PDF
    Recently Kuo et al. [1,2] and Satio et al.[3] presented the surface-thermal lens (STL) technique, this novel photothermal deformation technique has attracted great attention because it is a highly sensitive, noncontact and nondestructive measurement[4–6]. In this technique, a modulated pump beam is focused on the sample surface to produce the surface deformation and a cw probe beam is incident at the deformation region. Differing from the conventional photothermal deformation techniques, the spot size of the probe beam at the sample surface is much larger than the pump beam one. Then the probe beam reflected from the surface produces a diffraction pattern at the detection plane. More recently, STL technique has been successfully applied to study the temperature dependence of the thermal conductivity of semiconductor materials[5], weak absorption of optical thin films[6] and characterization of the solid materials[7,8]. However, the mechanism of STL phenomena has not been completely understood. Most theoretical models took no account of the influence of the air-thermal lens (ATL), although some experiment showed that the air significantly affected the detected diffraction pattern[2]. In addition, it is necessary to characterize frequency responses of signals because the response is used to determine the thermal property of the solid materials[5]

    Shift in the Intrinsic Excitability of Medial Prefrontal Cortex Neurons following Training in Impulse Control and Cued-Responding Tasks

    Get PDF
    Impulse control is an executive process that allows animals to inhibit their actions until an appropriate time. Previously, we reported that learning a simple response inhibition task increases AMPA currents at excitatory synapses in the prelimbic region of the medial prefrontal cortex (mPFC). Here, we examined whether modifications to intrinsic excitability occurred alongside the synaptic changes. To that end, we trained rats to obtain a food reward in a response inhibition task by withhold responding on a lever until they were signaled to respond. We then measured excitability, using whole-cell patch clamp recordings in brain slices, by quantifying action potentials generated by the injection of depolarizing current steps. Training in this task depressed the excitability of layer V pyramidal neurons of the prelimbic, but not infralimbic, region of the mPFC relative to behavioral controls. This decrease in maximum spiking frequency was significantly correlated with performance on the final session of the task. This change in intrinsic excitability may represent a homeostatic mechanism counterbalancing increased excitatory synaptic inputs onto those neurons in trained rats. Interestingly, subjects trained with a cue that predicted imminent reward availability had increased excitability in infralimbic, but not the prelimbic, pyramidal neurons. This dissociation suggests that both prelimbic and infralimbic neurons are involved in directing action, but specialized for different types of information, inhibitory or anticipatory, respectively

    Endocrine regulation of predator-induced phenotypic plasticity

    Get PDF
    Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator)

    An interspecific linkage map of SSR and intronic polymorphism markers in tomato

    Get PDF
    Despite the collection and availability of abundant tomato genome sequences, PCR-based markers adapted to large scale analysis have not been developed in tomato species. Therefore, using public genome sequence data in tomato, we developed three types of DNA markers: expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers (TES markers), genome-derived SSR markers (TGS markers) and EST-derived intronic polymorphism markers (TEI markers). A total of 2,047 TES, 3,510 TGS and 674 TEI markers were established and used in the polymorphic analysis of a cultivated tomato (Solanum lycopersicum) ‘LA925’ and its wild relative Solanum pennellii ‘LA716’, parents of the Tomato-EXPEN 2000 mapping population. The polymorphic ratios between parents revealed by the TES, TGS and TEI markers were 37.3, 22.6 and 80.0%, respectively. Those showing polymorphisms were used to genotype the Tomato-EXPEN 2000 mapping population, and a high-density genetic linkage map composed of 1,433 new and 683 existing marker loci was constructed on 12 chromosomes, covering 1,503.1 cM. In the present map, 48% of the mapped TGS loci were located within heterochromatic regions, while 18 and 21% of TES and TEI loci, respectively, were located in heterochromatin. The large number of SSR and SNP markers developed in this study provide easily handling genomic tools for molecular breeding in tomato. Information on the DNA markers developed in this study is available at http://www.kazusa.or.jp/tomato/

    A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development

    Get PDF
    Tobacco (Nicotiana tabacum L.) is a species in the large family of the Solanaceae and is important as an agronomic crop and as a model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available that can be used for genome analysis, genetic mapping and breeding. We report here on the development and characterization of 5,119 new and functional microsatellite markers and on the generation of a high-resolution genetic map for the tetraploid tobacco genome. The genetic map was generated using an F2 mapping population derived from the intervarietal cross of Hicks Broadleaf × Red Russian and merges the polymorphic markers from this new set with those from a smaller set previously used to produce a lower density map. The genetic map described here contains 2,317 microsatellite markers and 2,363 loci, resulting in an average distance between mapped microsatellite markers which is less than 2 million base pairs or 1.5 cM. With this new and expanded marker resource, a sufficient number of markers are now available for multiple applications ranging from tobacco breeding to comparative genome analysis. The genetic map of tobacco is now comparable in marker density and resolution with the best characterized genomes of the Solanaceae: tomato and potato

    Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Domestication and breeding involve the selection of particular phenotypes, limiting the genomic diversity of the population and creating a bottleneck. These effects can be precisely estimated when the location of domestication is established. Few analyses have focused on understanding the genetic consequences of domestication and breeding in fruit trees. In this study, we aimed to analyse genetic structure and changes in the diversity in sweet cherry <it>Prunus avium </it>L.</p> <p>Results</p> <p>Three subgroups were detected in sweet cherry, with one group of landraces genetically very close to the analysed wild cherry population. A limited number of SSR markers displayed deviations from the frequencies expected under neutrality. After the removal of these markers from the analysis, a very limited bottleneck was detected between wild cherries and sweet cherry landraces, with a much more pronounced bottleneck between sweet cherry landraces and modern sweet cherry varieties. The loss of diversity between wild cherries and sweet cherry landraces at the <it>S</it>-locus was more significant than that for microsatellites. Particularly high levels of differentiation were observed for some <it>S</it>-alleles.</p> <p>Conclusions</p> <p>Several domestication events may have happened in sweet cherry or/and intense gene flow from local wild cherry was probably maintained along the evolutionary history of the species. A marked bottleneck due to breeding was detected, with all markers, in the modern sweet cherry gene pool. The microsatellites did not detect the bottleneck due to domestication in the analysed sample. The vegetative propagation specific to some fruit trees may account for the differences in diversity observed at the <it>S</it>-locus. Our study provides insights into domestication events of cherry, however, requires confirmation on a larger sampling scheme for both sweet cherry landraces and wild cherry.</p

    The Bryopsis hypnoides Plastid Genome: Multimeric Forms and Complete Nucleotide Sequence

    Get PDF
    BACKGROUND: Bryopsis hypnoides Lamouroux is a siphonous green alga, and its extruded protoplasm can aggregate spontaneously in seawater and develop into mature individuals. The chloroplast of B. hypnoides is the biggest organelle in the cell and shows strong autonomy. To better understand this organelle, we sequenced and analyzed the chloroplast genome of this green alga. PRINCIPAL FINDINGS: A total of 111 functional genes, including 69 potential protein-coding genes, 5 ribosomal RNA genes, and 37 tRNA genes were identified. The genome size (153,429 bp), arrangement, and inverted-repeat (IR)-lacking structure of the B. hypnoides chloroplast DNA (cpDNA) closely resembles that of Chlorella vulgaris. Furthermore, our cytogenomic investigations using pulsed-field gel electrophoresis (PFGE) and southern blotting methods showed that the B. hypnoides cpDNA had multimeric forms, including monomer, dimer, trimer, tetramer, and even higher multimers, which is similar to the higher order organization observed previously for higher plant cpDNA. The relative amounts of the four multimeric cpDNA forms were estimated to be about 1, 1/2, 1/4, and 1/8 based on molecular hybridization analysis. Phylogenetic analyses based on a concatenated alignment of chloroplast protein sequences suggested that B. hypnoides is sister to all Chlorophyceae and this placement received moderate support. CONCLUSION: All of the results suggest that the autonomy of the chloroplasts of B. hypnoides has little to do with the size and gene content of the cpDNA, and the IR-lacking structure of the chloroplasts indirectly demonstrated that the multimeric molecules might result from the random cleavage and fusion of replication intermediates instead of recombinational events

    Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family

    Get PDF
    Abstract Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.Apple genome research at FEM is supported by the research office of the Provincia autonoma di Trento. DJS and ELG acknowledge a grant from the East Malling Trust. Fragaria genomics at EMR is funded by the BBSRC. JMB is supported by a grant by Plant & Food Research's Excellence Programme. Apple genomics at Plant & Food Research is partially supported by the New Zealand Foundation for Research Science and Technology project C06X0812 "Exploiting Opportunities from Horticultural Genomics". Research conducted at IRTA was partly funded by the CONSOLIDER-INGENIO 2010 Program (CSD2007-00036) and project INIA-RTA2007-00063-00-00, both from the Spanish Ministry of Science and Innovation. RosCOS development at OSU/MSU was funded by the National Research Initiative Competitive Grant 2005-35300-15454 of USDA's National Institute of Food and Agriculture.Peer Reviewe

    Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot

    Get PDF
    Xanthomonas arboricola pv. pruni causes bacterial spot of stone fruit resulting in severe yield losses in apricot production systems. Present on all continents, the pathogen is regulated in Europe as a quarantine organism. Host resistance is an important component of integrated pest management; however, little work has been done describing resistance against X. arboricola pv. pruni. In this study, an apricot population derived from the cross “Harostar” × “Rouge de Mauves” was used to construct two parental genetic maps and to perform a quantitative trait locus analysis of resistance to X. arboricola pv. pruni. A population of 101 F1 individuals was inoculated twice for two consecutive years in a quarantine greenhouse with a mixture of bacterial strains, and disease incidence and resistance index data were collected. A major QTL for disease incidence and resistance index accounting respectively for 53 % (LOD score of 15.43) and 46 % (LOD score of 12.26) of the phenotypic variation was identified at the same position on linkage group 5 of “Rouge de Mauves.” Microsatellite marker UDAp-452 co-segregated with the resistance, and two flanking microsatellites, namely BPPCT037 and BPPCT038A, were identified. When dividing the population according to the alleles of UDAp-452, the subgroup with unfavorable allele had a disease incidence of 32.6 % whereas the group with favorable allele had a disease incidence of 21 %, leading to a reduction of 35.6 % in disease incidence. This study is a first step towards the marker-assisted breeding of new apricot varieties with an increased tolerance to X. arboricola pv. pruni

    The role of impulsivity in the aetiology of drug dependence: reward sensitivity versus automaticity

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright © The Author(s) 2011.RATIONALE: Impulsivity has long been known as a risk factor for drug dependence, but the mechanisms underpinning this association are unclear. Impulsivity may confer hypersensitivity to drug reinforcement which establishes higher rates of instrumental drug-seeking and drug-taking behaviour, or may confer a propensity for automatic (non-intentional) control over drug-seeking/taking and thus intransigence to clinical intervention. METHOD: The current study sought to distinguish these two accounts by measuring Barratt Impulsivity and craving to smoke in 100 smokers prior to their completion of an instrumental concurrent choice task for tobacco (to measure the rate of drug-seeking) and an ad libitum smoking test (to measure the rate of drug-taking-number of puffs consumed). RESULTS: The results showed that impulsivity was not associated with higher rates of drug-seeking/taking, but individual differences in smoking uptake and craving were. Rather, nonplanning impulsivity moderated (decreased) the relationship between craving and drug-taking, but not drug-seeking. CONCLUSIONS: These data suggest that whereas the uptake of drug use is mediated by hypervaluation of the drug as an instrumental goal, the orthogonal trait nonplanning impulsivity confers a propensity for automatic control over well-practiced drug-taking behaviour.MR
    corecore