25 research outputs found

    Item level characterization of mm-wave indoor propagation

    Get PDF
    According to the current prospect of allocating next generation wireless systems in the underutilized millimeter frequency bands, a thorough characterization of mm-wave propagation represents a pressing necessity. In this work, an “item level” characterization of radiowave propagation at 70 GHz is carried out. The scattering properties of several, different objects commonly present in indoor environment are investigated by means of measurements carried out in an anechoic chamber. The measured data have been also exploited to tune some parameters of a 3D ray tracing model

    Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants

    Get PDF
    Abstract Freezing tolerance is the result of a wide range of physical and biochemical processes, such as the induction of antifreeze proteins, changes in membrane composition, the accumulation of osmoprotectants, and changes in the redox status, which allow plants to function at low temperatures. Even in frost-tolerant species, a certain period of growth at low but nonfreezing temperatures, known as frost or cold hardening, is required for the development of a high level of frost hardiness. It has long been known that frost hardening at low temperature under low light intensity is much less effective than under normal light conditions; it has also been shown that elevated light intensity at normal temperatures may partly replace the cold-hardening period. Earlier results indicated that cold acclimation reflects a response to a chloroplastic redox signal while the effects of excitation pressure extend beyond photosynthetic acclimation, influencing plant morphology and the expression of certain nuclear genes involved in cold acclimation. Recent results have shown that not only are parameters closely linked to the photosynthetic electron transport processes affected by light during hardening at low temperature, but light may also have an influence on the expression level of several other cold-related genes; several cold-acclimation processes can function efficiently only in the presence of light. The present review provides an overview of mechanisms that may explain how light improves the freezing tolerance of plants during the cold-hardening period

    Twenty years of stereotype threat research: A review of psychological mediators

    Get PDF
    This systematic literature review appraises critically the mediating variables of stereotype threat. A bibliographic search was conducted across electronic databases between 1995 and 2015. The search identified 45 experiments from 38 articles and 17 unique proposed mediators that were categorized into affective/subjective (n = 6), cognitive (n = 7) and motivational mechanisms (n = 4). Empirical support was accrued for mediators such as anxiety, negative thinking, and mind-wandering, which are suggested to co-opt working memory resources under stereotype threat. Other research points to the assertion that stereotype threatened individuals may be motivated to disconfirm negative stereotypes, which can have a paradoxical effect of hampering performance. However, stereotype threat appears to affect diverse social groups in different ways, with no one mediator providing unequivocal empirical support. Underpinned by the multi-threat framework, the discussion postulates that different forms of stereotype threat may be mediated by distinct mechanisms

    Ray Model of Indoor Propagation

    No full text

    Genome-wide analysis of antiviral signature genes in porcine macrophages at different activation statuses

    Get PDF
    Macrophages (MФs) can be polarized to various activation statuses, including classical (M1), alternative (M2), and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV) infection, we used RNA Sequencing (RNA-Seq) for transcriptomic analysis of differentially expressed genes (DEGs). Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153–5,303 significant DEGs [false discovery rate (FDR) ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS) and interferon (IFN)γ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL)-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20–50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK) and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis
    corecore