9 research outputs found

    Strengths-Weaknesses-Opportunities-Threats analysis of carbon footprint indicator and derived recommendations

    Get PDF
    ABSTRACT: Demand for a low carbon footprint may be a key factor in stimulating innovation, while prompting politicians to promote sustainable consumption. However, the variety of methodological approaches and techniques used to quantify life-cycle emissions prevents their successful and widespread implementation. This study aims to offer recommendations for researchers, policymakers and practitioners seeking to achieve a more consistent approach for carbon footprint analysis. This assessment is made on the basis of a comprehensive Strengths-Weaknesses-Opportunities-Threats or SWOT Analysis of the carbon footprint indicator. It is carried out bringing together the collective experience from the Carbonfeel Project following the Delphi technique principles. The results include the detailed SWOT Analysis from which specific recommendations to cope with the threats and the weaknesses are identified. In particular, results highlight the importance of the integrated approach to combine organizational and product carbon footprinting in order to achieve a more standardized and consistent approach. These recommendations can therefore serve to pave the way for the development of new, specific and highly-detailed guidelines

    Environmental impact of heavy pig production in a sample of Italian farms. A cradle to farm-gate analysis

    No full text
    Four breeding piggeries and eight growing-fattening piggerieswere analyzed to estimate potential environmental impacts of heavy pig production (N160 kg of live height at slaughtering). Life Cycle Assessment methodology was adopted in the study, considering a system from breeding phase to growing fattening phase. Environmental impacts of breeding phase and growing-fattening phasewere accounted separately and then combined to obtain the impacts of heavy pig production. The functional unit was 1 kg of live weight gain. Impact categories investigated were global warming (GW), acidification (AC), eutrophication (EU), abiotic depletion (AD), and photochemical ozone formation (PO). The total environmental impact of 1 kg of live weight gain was 3.3 kg CO2eq, 4.9 E−2 kg SO2eq, 3.1 E−2 kg PO4 3−eq, 3.7 E−3 kg Sbeq, 1.7 E−3 kg C2H4eq for GW, AC, EU, AD, and PO respectively. Feed production was the main hotspot in all impact categories. Greenhouse gases responsible for GWwere mainly CH4, N2O, and CO2. Ammonia was the most important source of AC, sharing about 90%. Nitrate and NH3 were the main emissions responsible for EU, whereas P and NOx showed minor contributions. Crude oil and natural gas consumption was the main source of AD. A large spectrum of pollutants had a significant impact on PO: they comprised CH4 from manure fermentation, CO2 caused by fossil fuel combustion in agricultural operations and industrial processes, ethane and propene emitted during oil extraction and refining, and hexane used in soybean oil extraction. The farm characteristics that best explained the results were fundamentally connected with performance indicators Farms showed a wide variability of results, meaning that there was wide margin for improving the environmental performance of either breeding or growing-fattening farms. The effectiveness of some mitigation measures was evaluated and the results that could be obtained by their introduction have been presented

    Life Cycle Assessment and Solid Waste Management

    No full text
    corecore