415 research outputs found
Adaptive response and enlargement of dynamic range
Many membrane channels and receptors exhibit adaptive, or desensitized,
response to a strong sustained input stimulus, often supported by protein
activity-dependent inactivation. Adaptive response is thought to be related to
various cellular functions such as homeostasis and enlargement of dynamic range
by background compensation. Here we study the quantitative relation between
adaptive response and background compensation within a modeling framework. We
show that any particular type of adaptive response is neither sufficient nor
necessary for adaptive enlargement of dynamic range. In particular a precise
adaptive response, where system activity is maintained at a constant level at
steady state, does not ensure a large dynamic range neither in input signal nor
in system output. A general mechanism for input dynamic range enlargement can
come about from the activity-dependent modulation of protein responsiveness by
multiple biochemical modification, regardless of the type of adaptive response
it induces. Therefore hierarchical biochemical processes such as methylation
and phosphorylation are natural candidates to induce this property in signaling
systems.Comment: Corrected typos, minor text revision
HVOF and laser cladded Fe-Cr-B coating in simulated biomass combustion: microstructure and fireside corrosion
Biomass is often considered as a low carbon alternative to fossil fuels in the power industry. However the heat exchangers in biomass plants can suffer from chloride based aggressive fireside corrosion. A commercially available amorphous Fe-Cr-B alloy was deposited onto a stainless steel substrate by HVOF thermal spray and laser cladding. The controlled environment corrosion tests were conducted in a HCl rich environment at 700°C for 250 h with and without KCl deposits. The samples were examined with XRD, SEM and EDX mapping to understand the corrosion mechanisms. In the absence of any deposits, the amorphous HVOF coating performed very well with a thin oxide growth whereas the crystalline laser cladding suffered from ~350 μm metal loss. The scales were composed of MnWO₄, Fe₂O₃, Fe₃O₄ and Cr₂O₃. When a KCl deposit was present, the HVOF sprayed coating delaminated from the substrate and MnCl₂ was found in the scale
Chemotactic response and adaptation dynamics in Escherichia coli
Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia
coli is integral for detecting chemicals over a wide range of background
concentrations, ultimately allowing cells to swim towards sources of attractant
and away from repellents. Its biochemical mechanism based on methylation and
demethylation of chemoreceptors has long been known. Despite the importance of
adaptation for cell memory and behavior, the dynamics of adaptation are
difficult to reconcile with current models of precise adaptation. Here, we
follow time courses of signaling in response to concentration step changes of
attractant using in vivo fluorescence resonance energy transfer measurements.
Specifically, we use a condensed representation of adaptation time courses for
efficient evaluation of different adaptation models. To quantitatively explain
the data, we finally develop a dynamic model for signaling and adaptation based
on the attractant flow in the experiment, signaling by cooperative receptor
complexes, and multiple layers of feedback regulation for adaptation. We
experimentally confirm the predicted effects of changing the enzyme-expression
level and bypassing the negative feedback for demethylation. Our data analysis
suggests significant imprecision in adaptation for large additions.
Furthermore, our model predicts highly regulated, ultrafast adaptation in
response to removal of attractant, which may be useful for fast reorientation
of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript
(19 pages, 5 figures) and supplementary information; added additional
clarification on alternative adaptation models in supplementary informatio
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
Recommended from our members
Source term experiment STEP-3 simulating a PWR severe station blackout
For a severe PWR accident that leads to a loss of feedwater to the steam generators, such as might occur in a station blackout, fission product decay heating will cause a water boiloff. Without effective cooling of the core, steam will begin to oxidize the Zircaloy cladding. The noble gases and volatile fission products, such as Cs and I, that are major contributors to the radiological source term, will be released from the damaged fuel shortly after cladding failure. The accident environment when these volatile fission products escape was simulated in STEP-3 using four fuel elements from the Belgonucleaire BR3 reactor. The primary objective was to examine the releases in samples collected as close to the test zone as possible. In this paper, an analysis of the temperatures and hydrogen generation is compared with the measurements. The analysis is needed to estimate releases and characterize conditions at the source for studies of fission product transport
What are the resourcing requirements for an Aboriginal and Torres Strait Islander primary healthcare research project?
Objective and importance
To explore the role of resourcing during an Aboriginal and Torres Strait Islander primary healthcare research project.
Study type
Process evaluation using grounded theory approaches of a national Aboriginal and Torres Strait Islander research project (N=500) named Getting it Right: The validation study.
Methods
Qualitative semi-structured interviews with thirty-six primary healthcare staff and four community members from nine of ten primary healthcare services (participating services) involved in the research project. Interviews included questions about the resources needed to conduct the research project, including flexible reimbursement to participating services (allocated within services), human resources and reimbursement to research participants (vouchers). Qualitative data were triangulated with participant feedback (questions about the aPHQ-9 [depression screening tool under examination] and free-text feedback collected during the research project), study administrative data (budgets, contracts, communication logs and ethics correspondence) and field notes kept by the interviewer.
Results
Three themes were identified: 1) the influence of reimbursement on participating services and the research project: 2) the influence of human resources on the research project at participating services; and 3) the consequences of offering vouchers to reimburse research participants. Reimbursement was allocated to research expenses (human resources and logistics) or non-research expenses (service operations, equipment and conference attendance costs). Most services opted to offer vouchers to compensate participants for their time, which staff considered was appropriate recognition of participants’ contributions and facilitated recruitment. Some staff described some potential unintended negative consequences from vouchers, including creating a welfare mentality or the wrong precedent.
Conclusion
Primary healthcare research should have sufficient resourcing available, including human resource capacity, to achieve research targets. Research planning should include consideration of the existing commitments, priorities and human capacity needs of services and patients
A "Candidate-Interactome" Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms
Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features in the Gulf of Mexico
Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006–2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m−2) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m−2), white marlin (5.44 larvae 1000 m−2), and swordfish (4.67 larvae 1000 m−2). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations
- …
