428 research outputs found

    Muscle Hypertrophy in Prepubescent Tennis Players: A Segmentation MRI Study

    Get PDF
    PURPOSE: To asses if tennis at prepubertal age elicits the hypertrophy of dominant arm muscles. METHODS: The volume of the muscles of both arms was determined using magnetic resonance imaging (MRI) in 7 male prepubertal tennis players (TP) and 7 non-active control subjects (CG) (mean age 11.0 ± 0.8 years, Tanner 1-2). RESULTS: TP had 13% greater total muscle volume in the dominant than in the contralateral arm. The magnitude of inter-arm asymmetry was greater in TP than in CG (13 vs 3%, P<0.001). The dominant arm of TP was 16% greater than the dominant arm of CG (P<0.01), whilst non-dominant arms had similar total muscle volumes in both groups (P = 0.25), after accounting for height as covariate. In TP, dominant deltoid (11%), forearm supinator (55%) and forearm flexors (21%) and extensors (25%) were hypertrophied compared to the contralateral arm (P<0.05). In CG, the dominant supinator muscle was bigger than its contralateral homonimous (63%, P<0.05). CONCLUSIONS: Tennis at prepubertal age is associated with marked hypertrophy of the dominant arm, leading to a marked level of asymmetry (+13%), much greater than observed in non-active controls (+3%). Therefore, tennis particpation at prepubertal age is associated with increased muscle volumes in dominant compared to the non-dominant arm, likely due to selectively hypertrophy of the loaded muscles

    Reduced branching ratio for H -> AA -> 4 tau from A - eta_b mixing

    Get PDF
    Models with an extended Higgs sector, as the NMSSM, allow for scenarios where the Standard Model-like CP-even Higgs boson H decays dominantly as H -> AA -> 4 tau where A is a light CP-odd Higgs boson. Tight constraints on this scenario in the form of lower bounds on M_H have recently been published by the ALEPH group. We show that, due to A - eta_b mixing, the branching ratio H -> AA -> 4 tau is strongly reduced for M_A in the range 9 - 10.5 GeV. This is the range of M_A in which the tension between the observed eta_b(1S) mass and its prediction based on QCD can be resolved due to mixing, and which is thus still consistent with a light CP-even Higgs boson H satisfying LEP constraints with a mass well below 114 GeV. This result is practically independent from the coupling of A to b quarks.Comment: 11 pages, 2 Figures, reference adde

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie

    Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer

    Get PDF
    Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature’s most fascinating subcellular parasites

    Experimental evidence of rainbow trapping and Bloch oscillations of torsional waves in chirped metallic beams

    Full text link
    [EN] The Bloch oscillations (BO) and the rainbow trapping (RT) are two apparently unrelated phenomena, the former arising in solid state physics and the latter in metamaterials. A Bloch oscillation, on the one hand, is a counter-intuitive effect in which electrons start to oscillate in a crystalline structure when a static electric field is applied. This effect has been observed not only in solid state physics but also in optical and acoustical structured systems since a static electric field can be mimicked by a chirped structure. The RT, on the other hand, is a phenomenon in which the speed of a wave packet is slowed down in a dielectric structure; different colors then arrive to different depths within the structure thus separating the colors also in time. Here we show experimentally the emergence of both phenomena studying the propagation of torsional waves in chirped metallic beams. Experiments are performed in three aluminum beams in which different structures were machined: one periodic and two chirped. For the smaller value of the chirping parameter the wave packets, with different central frequencies, are back-scattered at different positions inside the corrugated beam; the packets with higher central frequencies being the ones with larger penetration depths. This behavior represents the mechanical analogue of the rainbow trapping effect. This phenomenon is the precursor of the mechanical Bloch oscillations, which are here demonstrated for a larger value of the chirping parameter. It is observed that the oscillatory behavior observed at small values of the chirp parameter is rectified according to the penetration length of the wave packet.Work partially supported by DGAPA-UNAM under projects PAPIIT IN103115 and IN109318 and by CONACYT project 284096. A.A.L. acknowledges CONACYT for the support granted to pursue his Ph.D. studies. G. Baez received CONACYT's financial support. RAMS received support from DGAPA-UNAM under program PASPA. We thank M. Martinez, A. Martinez, V. Dominguez-Rocha, E. Flores and E. Sadurni for invaluable comments. F.C., A.C. and J.S-D. acknowledge the support by the Ministerio de Economa y Competitividad of the Spanish government, and the European Union FEDER through project TEC2014-53088-C3-1-R.Arreola-Lucas, A.; Baez, G.; Cervera Moreno, FS.; Climente Alarcón, A.; Mendez-Sanchez, R.; Sánchez-Dehesa Moreno-Cid, J. (2019). Experimental evidence of rainbow trapping and Bloch oscillations of torsional waves in chirped metallic beams. Scientific Reports. 9:1860-1872. https://doi.org/10.1038/s41598-018-37842-7S186018729Ascroft, N. W. & Mermin, N. D. Solid State Physics (Hold, Reinhart & Winston, 1972).Kadic, M., Buckmann, T., Schittny, R. & Wegener, M. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013).Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mat. 1, 16001 (2016).Tsakmakidis, K. L., Boarman, A. D. & Hess, O. Trapped rainbow storage of light in metamaterials. Nature 450, 397–401 (2007).Kathryn, H. et al. Designing perturbative metamaterials from discrete models. Nat. Mat. 17, 323–328 (2018).de Lima, M. M. Jr., Kosevich, Y. A., Santos, P. V. & Cantarero, A. Surface acoustic Bloch oscillations and Wannier-Stark ladders and Landau-Zenner tunneling in a solid. Phys. Rev. Lett. 104, 165502, https://doi.org/10.1103/PhysRevLett.104.165502 (2010).Tian, Z. & Yu, L. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates. Sci. Rep. 7, 40004, https://doi.org/10.1038/srep40004 (2017).Waschke, C. et al. Coherent submillimeter-wave emission from bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett. 70, 3319–3322, https://doi.org/10.1103/PhysRevLett.70.3319 (1993).Sapienza, R. et al. Optical analogue of electronic Bloch oscillations. Phys. Rev. Lett. 91, 263902 (2014).Morandotti, R., Peschel, U., Aitchison, J. S., S., E. H. & Silberberg, Y. Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756 (1999).Battestti, R. et al. Bloch oscillations of ultracould atoms: a tool for a metrological determination of h / mRb. Phys. Rev. Lett. 92, 253001, https://doi.org/10.1103/PhysRevLett.92.253001 (2007).Sanchis-Alepuz, H., Kosevich, Y. & Sánchez-Dehesa, J. Acoustic analogue of electronic Bloch oscillations. Phys. Rev. Lett. 98, 134301, https://doi.org/10.1103/PhysRevLett.104.197402 (2007).Lanzilotti-Kimura, N. D. et al. Bloch oscillations of THz acoustic phonons in coupled nanocavity structures. Phys. Rev. Lett. 104, 197402, https://doi.org/10.1103/PhysRevLett.104.197402 (2010).Floß, J., Kamalov, A., Averbukh, I. S. & H., B. P. Observation of Bloch oscillations in molecular rotation. Phys. Rev. Lett. 115, 203002, https://doi.org/10.1103/PhysRevLett.115.203002 (2015).Gan, Q., Ding, Y. J. & Bartoli, F. Trapping and releasing at telecommunication wavelengths. Phys. Rev. Lett. 102, 056801, https://doi.org/10.1103/PhysRevLett.102.056801 (2009).Park, J., Boarman, A. D. & Hess, O. Trapping light in plasmonic waveguides. Opt. Express 18, 598–623, https://doi.org/10.1364/OE.18.000598 (2010).Zhao, D., Li, Y. & Zhu, X. Trapped rainbow effect in visible light left-handed heterostructures. Appl. Phys. Lett. 95, 071111, https://doi.org/10.1063/1.3211867 (2009).Smolyaninova, V. N., Smolyaninov, I. I., Kildishev, A. V. & Shalaev, V. Experimental observation of the trapped rainbow. Appl. Phys. Lett. 96, 211121, https://doi.org/10.1063/1.3442501 (2010).Ni, X. et al. Acoustic rainbow trapping by coiling up space. Sci. Rep. 4, 7038, https://doi.org/10.1038/srep07038 (2014).Zhu, J. et al. Acoustic rainbow trapping. Sci. Rep. 3, 1728, https://doi.org/10.1038/srep01728 (2013).Romero-García, V., Picó, R., Cebrecos, A., Sánchez-Morcillo, V. J. & Staliunas, K. Enhancement of sound in chirped sonic cristals. Appl. Phys. Lett. 102, 091906, https://doi.org/10.1063/1.4793575 (2013).Cebrecos, A. et al. Enhancement of sound by soft reflections in exponentially chirped cristals. AIP Adv. 4, 124402, https://doi.org/10.1063/1.4902508 (2014).Zhao, D., Li, Y. & Zhu, X. Broadband lamb wave trapping in cellular metamaterial plates with multiple local resonances. Sci. Rep. 5, 9376, https://doi.org/10.1038/srep09376 (2015).Gutierrez, L. et al. Wannier-stark ladders in one-dimensional elastic systems. Phys. Rev. Lett. 97, 114301, https://doi.org/10.1103/PhysRevLett.97.114301 (2006).Morales, A., Flores, J., Gutierrez, L. & Méndez-Sánchez, R. A. Compressional and torsional wave amplitudes in rods with periodic structures. J. Acoust. Soc. Am. 112, 1961, https://doi.org/10.1121/1.1509431 (2002).Arreola-Lucas, A. et al. Bloch oscillations in mechanical vibrations. PIERS proceedings. (to appear).Graff, K. F. Wave Motion in Elastic Solids (Dover, 1991)

    Keratinocyte-Targeted Overexpression of the Glucocorticoid Receptor Delays Cutaneous Wound Healing

    Get PDF
    Delayed wound healing is one of the most common secondary adverse effects associated to the therapeutic use of glucocorticoid (GC) analogs, which act through the ligand-dependent transcription factor GC-receptor (GR). GR function is exerted through DNA-binding-dependent and –independent mechanisms, classically referred to as transactivation (TA) and transrepression (TR). Currently both TA and TR are thought to contribute to the therapeutical effects mediated by GR; however their relative contribution to unwanted side effects such as delayed wound healing is unknown. We evaluated skin wound healing in transgenic mice with keratinocyte-restricted expression of either wild type GR or a mutant GR that is TA-defective but efficient in TR (K5-GR and K5-GR-TR mice, respectively). Our data show that at days (d) 4 and 8 following wounding, healing in K5-GR mice was delayed relative to WT, with reduced recruitment of granulocytes and macrophages and diminished TNF-α and IL-1β expression. TGF-β1 and Kgf expression was repressed in K5-GR skin whereas TGF-β3 was up-regulated. The re-epithelialization rate was reduced in K5-GR relative to WT, as was formation of granulation tissue. In contrast, K5-GR-TR mice showed delays in healing at d4 but re-established the skin breach at d8 concomitant with decreased repression of pro-inflammatory cytokines and growth factors relative to K5-GR mice. Keratinocytes from both transgenic mice closed in vitro wounds slower relative to WT, consistent with the in vivo defects in cell migration. Overall, the delay in the early stages of wound healing in both transgenic models is similar to that elicited by systemic treatment with dexamethasone. Wound responses in the transgenic keratinocytes correlated with reduced ERK activity both in vivo and in vitro. We conclude that the TR function of GR is sufficient for negatively regulating early stages of wound closure, while TA by GR is required for delaying later stages of healing

    Factors affecting calcium oxalate dihydrate fragmented calculi regrowth

    Get PDF
    BACKGROUND: The use of extracorporeal shock wave lithotripsy (ESWL) to treat calcium oxalate dihydrate (COD) renal calculi gives excellent fragmentation results. However, the retention of post-ESWL fragments within the kidney remains an important health problem. This study examined the effect of various urinary conditions and crystallization inhibitors on the regrowth of spontaneously-passed post-ESWL COD calculi fragments. METHODS: Post-ESWL COD calculi fragments were incubated in chambers containing synthetic urine varying in pH and calcium concentration: pH = 5.5 normocalciuria (3.75 mM), pH = 5.5 hypercalciuria (6.25 mM), pH = 6.5 normocalciuria (3.75 mM) or pH = 6.5 hypercalciuria (6.25 mM). Fragment growth was evaluated by measuring increases in weight. Fragment growth was standardized by calculating the relative mass increase. RESULTS: Calcium oxalate monohydrate (COM) crystals formed on COD renal calculi fragments under all conditions. Under pH = 5.5 normocalciuria conditions, only COM crystals formed (growth rate = 0.22 ± 0.04 μg/mg·h). Under pH = 5.5 hypercalciuria and under pH = 6.5 normocalciuria conditions, COM crystals and a small number of new COD crystals formed (growth rate = 0.32 ± 0.03 μg/mg·h and 0.35 ± 0.05 μg/mg·h, respectively). Under pH = 6.5 hypercalciuria conditions, large amounts of COD, COM, hydroxyapatite and brushite crystals formed (growth rate = 3.87 ± 0. 34 μg/mg·h). A study of three crystallization inhibitors demonstrated that phytate completely inhibited fragment growth (2.27 μM at pH = 5.5 and 4.55 μM at pH = 6.5, both under hypercalciuria conditions), while 69.0 μM pyrophosphate caused an 87% reduction in mass under pH = 6.5 hypercalciuria conditions. In contrast, 5.29 mM citrate did not inhibit fragment mass increase under pH = 6.5 hypercalciuria conditions. CONCLUSION: The growth rate of COD calculi fragments under pH = 6.5 hypercalciuria conditions was approximately ten times that observed under the other three conditions. This observation suggests COD calculi residual fragments in the kidneys together with hypercalciuria and high urinary pH values may be a risk factor for stone growth. The study also showed the effectiveness of specific crystallization inhibitors in slowing calculi fragment growth

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects
    corecore