16 research outputs found

    E. coli metabolic protein aldehydealcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    Get PDF
    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosom

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    An introduction to systems toxicology

    No full text
    The science of toxicology is the science of the system. Toxicologists aim to understand and predict the adverse effects of chemicals on biological systems. As biological systems are extremely complex, the challenge of predicting human toxicity early in the drug discovery process is immense. In the past decades, a huge effort has been undertaken to characterise the impact of chemicals on biological systems using in vitro, pre-clinical and clinical approaches. This has led to a vast amount of knowledge on the biology of systems, especially as a result of the data deluge from -omic level investigations. However, a lack of robust and comprehensive integration has meant that this wealth of data has still not led to accurate prediction of toxicity in a single system, or the ability to extrapolate robustly between systems. The new discipline of systems toxicology aims to take the computational approaches developed in systems biology and apply them to toxicology-related questions. This review will examine approaches ranging from relational databases that are both repositories for curated information and screening tools in their own right, to the potential of digital organisms in systems toxicology. Both the basic methodologies and how best they may be applied to safety assessment of chemicals will be covered. This integrated examination of toxicological data is predicted to herald a step-change in our ability to both understand and predict adverse effects of chemicals
    corecore