173 research outputs found

    Hygienic quality of dehydrated aromatic herbs marketed in Southern Portugal

    Get PDF
    Dehydrated aromatic herbs are highly valued ingredients, widely used at home level and by food processing industry, frequently added to a great number of recipes in the Mediterranean countries. Despite being considered low-moisture products and classified as GRAS, during pre and post-harvesting stages of production they are susceptible of microbial contamination. In Europe an increasing number of food recalls and disease outbreaks associated with dehydrated herbs have been reported in recent years. In this study the microbial quality of 99 samples of aromatic herbs (bay leaves, basil, coriander, oregano, parsley, Provence herbs, rosemary and thyme) collected from retails shops in the region of Algarve (Southern Portugal) was assessed. All the samples were tested by conventional methods and were assayed for the total count of aerobic mesophilic microorganisms, Salmonella spp., Escherichia coli, coagulase-positive staphylococci and filamentous fungi. Almost 50 % of the herbs did not exceed the aerobic mesophilic level of 104 CFU/g. The fungi count regarded as unacceptable (106 CFU/g) was not found in any of the tested herbs, while 84 % of the samples ranged from ≤102 to 104 CFU/g. No sample was positive for the presence of Salmonella spp., Escherichia coli and staphylococci. The results are in compliance with the European Commission criteria although they point out to the permanent need of surveillance on the good standards of handling/cooking practices as well as the importance of avoiding contamination at production, retailing and distribution. The microbiological hazards associated with the pathogenic and toxigenic microbiota of dried herbs remain as a relevant public health issue, due to the fact that they are added to foods not submitted to any following lethal procedure. Control measures should be adopted in order to ensure that all phases of their supply chain respect the food safety standards.FCT: UID/BIA/04325/2019.info:eu-repo/semantics/publishedVersio

    Pharmacological Investigations of N-Substituent Variation in Morphine and Oxymorphone: Opioid Receptor Binding, Signaling and Antinociceptive Activity

    Get PDF
    Morphine and structurally related derivatives are highly effective analgesics, and the mainstay in the medical management of moderate to severe pain. Pharmacological actions of opioid analgesics are primarily mediated through agonism at the mopioid peptide (MOP) receptor, a G protein-coupled receptor. Position 17 in morphine has been one of the most manipulated sites on the scaffold and intensive research has focused on replacements of the 17-methyl group with other substituents. Structural variations at the N-17 of the morphinan skeleton led to a diversity of molecules appraised as valuable and potential therapeutics and important research probes. Discovery of therapeutically useful morphine-like drugs has also targeted the C-6 hydroxyl group, with oxymorphone as one of the clinically relevant opioid analgesics, where a carbonyl instead of a hydroxyl group is present at position 6. Herein, we describe the effect of N-substituent variation in morphine and oxymorphone on in vitro and in vivo biological properties and the emerging structure-activity relationships. We show that the presence of a N-phenethyl group in position 17 is highly favorable in terms of improved affinity and selectivity at the MOP receptor, potent agonism and antinociceptive efficacy. The N-phenethyl derivatives of morphine and oxymorphone were very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, they were highly effective against acute thermal nociception in mice with marked increased antinociceptive potency compared to the lead molecules. It was also demonstrated that a carbonyl group at position 6 is preferable to a hydroxyl function in these N-phenethyl derivatives, enhancing MOP receptor affinity and agonist potency in vitro and in vivo. These results expand the understanding of the impact of different moieties at the morphinan nitrogen on ligand-receptor interaction, molecular mode of action and signaling, and may be instrumental to the development of new opioid therapeutics

    Natural disasters and indicators of social cohesion

    Get PDF
    Do adversarial environmental conditions create social cohesion? We provide new answers to this question by exploiting spatial and temporal variation in exposure to earthquakes across Chile. Using a variety of methods and controlling for a number of socio-economic variables, we find that exposure to earthquakes has a positive effect on several indicators of social cohesion. Social cohesion increases after a big earthquake and slowly erodes in periods where environmental conditions are less adverse. Our results contribute to the current debate on whether and how environmental conditions shape formal and informal institutions

    Evolutional and clinical implications of the epigenetic regulation of protein glycosylation

    Get PDF
    Protein N glycosylation is an ancient posttranslational modification that enriches protein structure and function. The addition of one or more complex oligosaccharides (glycans) to the backbones of the majority of eukaryotic proteins makes the glycoproteome several orders of magnitude more complex than the proteome itself. Contrary to polypeptides, which are defined by a sequence of nucleotides in the corresponding genes, glycan parts of glycoproteins are synthesized by the activity of hundreds of factors forming a complex dynamic network. These are defined by both the DNA sequence and the modes of regulating gene expression levels of all the genes involved in N glycosylation. Due to the absence of a direct genetic template, glycans are particularly versatile and apparently a large part of human variation derives from differences in protein glycosylation. However, composition of the individual glycome is temporally very constant, indicating the existence of stable regulatory mechanisms. Studies of epigenetic mechanisms involved in protein glycosylation are still scarce, but the results suggest that they might not only be important for the maintenance of a particular glycophenotype through cell division and potentially across generations but also for the introduction of changes during the adaptive evolution

    Avicin D: A Protein Reactive Plant Isoprenoid Dephosphorylates Stat 3 by Regulating Both Kinase and Phosphatase Activities

    Get PDF
    Avicins, a class of electrophilic triterpenoids with pro-apoptotic, anti-inflammatory and antioxidant properties, have been shown to induce redox-dependant post-translational modification of cysteine residues to regulate protein function. Based on (a) the cross-talk that occurs between redox and phosphorylation processes, and (b) the role of Stat3 in the process of apoptosis and carcinogenesis, we chose to study the effects of avicins on the processes of phosphorylation/dephosphorylation in Stat3. Avicins dephosphorylate Stat3 in a variety of human tumor cell lines, leading to a decrease in the transcriptional activity of Stat3. The expression of Stat3-regulated proteins such as c-myc, cyclin D1, Bcl2, survivin and VEGF were reduced in response to avicin treatment. Underlying avicin-induced dephosphorylation of Stat3 was dephosphorylation of JAKs, as well as activation of protein phosphatase-1. Downregulation of both Stat3 activity and expression of Stat 3-controlled pro-survival proteins, contributes to the induction of apoptosis in avicin treated tumor cells. Based on the role of Stat3 in inflammation and wounding, and the in vivo inhibition of VEGF by avicins in a mouse skin carcinogenesis model, it is likely that avicin-induced inhibition of Stat3 activity results in the suppression of the pro-inflammatory and pro-oxidant stromal environment of tumors. Activation of PP-1, which also acts as a cellular economizer, combined with the redox regulation by avicins, can aid in redirecting metabolism from growth promoting anabolic to energy sparing pathways

    5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells

    Get PDF
    YesMammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and enhancers at the multi-TAD EDC locus in skin epithelial cells are cell type-specific and involve extensive contacts within TADs as well as between different gene-rich TADs, forming the framework for lineage-specific transcription.This study was supported by the grants 5R01AR064580 and 1RO1AR071727 to VAB, TKS and AAS, as well as by the grants from MRC (MR/ M010015/1) and BBSRC (BB/K010050/1) to VAB

    THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview

    Get PDF
    The Concise Guide to PHARMACOLOGY 2017/18 is the third in this series of biennial publications. This version provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full. In addition to this overview, in which are identified ‘Other protein targets’ which fall outside of the subsequent categorisation, there are eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    The Concise Guide to PHARMACOLOGY 2015/16:Ligand-gated ion channels

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13349/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    The Concise Guide to PHARMACOLOGY 2015/16:Enzymes

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13354/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
    corecore