84 research outputs found

    What Counts as ‘World Class’? : Global University Rankings and Shifts in Institutional Strategies

    Get PDF
    Global university rankings have emerged as a benchmark of institutional success, setting standards for higher education policymaking and institutional practices. Nevertheless, only a marginal share of higher education institutions (HEI) are in a realistic position to be ranked as a ‘world-class’ institutions. In the European context, the global rankings have been used to highlight a performance gap between European and North American institutions. Here the focus has been on the HEIs in the top-100 positions, causing concerns over European higher education. This has also become a marker of world-class university. We analyze the strategies of 27 Northern European universities in different tiers to learn how they have adjusted to the reality of ranking. We conclude that the references to global rankings have increased between 2014 and 2018. At the same time, the references to rankings have become more implicit in nature. Nevertheless, we find that the discourse of global comparison and excellence has become more common in the strategies. There are also emerging references to the regional role of universities, which are apparent in the strategies of universities that are clearly outside the top-100 ranked institutions. However, this is also a reflection of the discourse of world-class university.Peer reviewe

    Dynamics of Rye Chromosome 1R Regions with High or Low Crossover Frequency in Homology Search and Synapsis Development

    Get PDF
    In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RLinv) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RLinv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis

    Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5

    Get PDF
    APPL1 is an effector of the small GTPase Rab5. Together, they mediate a signal transduction pathway initiated by ligand binding to cell surface receptors. Interaction with Rab5 is confined to the amino (N)-terminal region of APPL1. We report the crystal structures of human APPL1 N-terminal BAR-PH domain motif. The BAR and PH domains, together with a novel linker helix, form an integrated, crescent-shaped, symmetrical dimer. This BAR–PH interaction is likely conserved in the class of BAR-PH containing proteins. Biochemical analyses indicate two independent Rab-binding sites located at the opposite ends of the dimer, where the PH domain directly interacts with Rab5 and Rab21. Besides structurally supporting the PH domain, the BAR domain also contributes to Rab binding through a small surface region in the vicinity of the PH domain. In stark contrast to the helix-dominated, Rab-binding domains previously reported, APPL1 PH domain employs β-strands to interact with Rab5. On the Rab5 side, both switch regions are involved in the interaction. Thus we identified a new binding mode between PH domains and small GTPases

    Insights on Glucocorticoid Receptor Activity Modulation through the Binding of Rigid Steroids

    Get PDF
    Background: The glucocorticoid receptor (GR) is a transcription factor that regulates gene expression in a ligand-dependent fashion. This modular protein is one of the major pharmacological targets due to its involvement in both cause and treatment of many human diseases. Intense efforts have been made to get information about the molecular basis of GR activity. Methodology/Principal Findings: Here, the behavior of four GR-ligand complexes with different glucocorticoid and antiglucocorticoid properties were evaluated. The ability of GR-ligand complexes to oligomerize in vivo was analyzed by performing the novel Number and Brightness assay. Results showed that most of GR molecules form homodimers inside the nucleus upon ligand binding. Additionally, in vitro GR-DNA binding analyses suggest that ligand structure modulates GRDNA interaction dynamics rather than the receptor's ability to bind DNA. On the other hand, by coimmunoprecipitation studies we evaluated the in vivo interaction between the transcriptional intermediary factor 2 (TIF2) coactivator and different GR-ligand complexes. No correlation was found between GR intranuclear distribution, cofactor recruitment and the homodimerization process. Finally, Molecular determinants that support the observed experimental GR LBD-ligand/TIF2 interaction were found by Molecular Dynamics simulation. Conclusions/Significance: The data presented here sustain the idea that in vivo GR homodimerization inside the nucleus can be achieved in a DNA-independent fashion, without ruling out a dependent pathway as well. Moreover, since at least one GR-ligand complex is able to induce homodimer formation while preventing TIF2 coactivator interaction, results suggest that these two events might be independent from each other. Finally, 21-hydroxy-6,19-epoxyprogesterone arises as a selective glucocorticoid with potential pharmacological interest. Taking into account that GR homodimerization and cofactor recruitment are considered essential steps in the receptor activation pathway, results presented here contribute to understand how specific ligands influence GR behavior. © 2010 Presman et al.Fil:Presman, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Alvarez, L.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Martí, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Veleiro, A.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Burton, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pecci, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Thousands of Rab GTPases for the Cell Biologist

    Get PDF
    Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform comparative analysis in cell biology

    Ecosystem Services from Small Forest Patches in Agricultural Landscapes

    Full text link

    Genetic architecture:The shape of the genetic contribution to human traits and disease

    Get PDF

    The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation

    Get PDF
    corecore