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Abstract

The widespread use of antibiotics in the past 80 years has saved millions of human lives, facilitated technological
progress and killed incalculable numbers of microbes, both pathogenic and commensal. Human-associated
microbes perform an array of important functions, and we are now just beginning to understand the ways in which
antibiotics have reshaped their ecology and the functional consequences of these changes. Mounting evidence
shows that antibiotics influence the function of the immune system, our ability to resist infection, and our capacity
for processing food. Therefore, it is now more important than ever to revisit how we use antibiotics. This review
summarizes current research on the short-term and long-term consequences of antibiotic use on the human
microbiome, from early life to adulthood, and its effect on diseases such as malnutrition, obesity, diabetes, and
Clostridium difficile infection. Motivated by the consequences of inappropriate antibiotic use, we explore recent
progress in the development of antivirulence approaches for resisting infection while minimizing resistance to
therapy. We close the article by discussing probiotics and fecal microbiota transplants, which promise to restore the
microbiota after damage of the microbiome. Together, the results of studies in this field emphasize the importance
of developing a mechanistic understanding of gut ecology to enable the development of new therapeutic
strategies and to rationally limit the use of antibiotic compounds.
Collateral harm from the use of antibiotics
The beneficial impact that the control of bacterial patho-
gens has had on our standard of living is difficult to
overstate. However, our control over microbial disease is
diminishing. Human pathogens have repeatedly acquired
the genetic capacity to survive antibiotic treatment
owing to heavy selective pressures resulting from wide-
spread antibiotic use. The incidence of antibiotic-
resistant infections is rising sharply, while the rate of dis-
covery of new antibiotics is slowing, in such a way that
the number of withdrawals of antibiotics from healthcare
exceeds the number of approvals by a factor of two [1].
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In 2015, antibiotic-resistant pathogens were estimated to
cause over 50,000 deaths a year in Europe and the USA.
The toll is projected to rise to 10 million deaths per year
worldwide by 2050 [2]. These figures suggest we are
reaching the end of the antibiotic era.
In addition to the development of resistance, the use

of antibiotics heavily disrupts the ecology of the human
microbiome (i.e., the collection of cells, genes, and me-
tabolites from the bacteria, eukaryotes, and viruses that
inhabit the human body). A dysbiotic microbiome may
not perform vital functions such as nutrient supply, vita-
min production, and protection from pathogens [3].
Dysbiosis of the microbiome has been associated with a
large number of health problems and causally implicated
in metabolic, immunological, and developmental disor-
ders, as well as susceptibility to development of infec-
tious diseases [4–11]. The wide variety of systems
involved in these diseases provides ample cause for
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concern over the unintentional consequences of anti-
biotic use. This review will discuss current understand-
ing of these additional effects of antibiotics on the
human microbiome, the resulting effects on health, and
alternative therapeutic approaches.

Approaches for identifying a dysbiotic microbiota
It is becoming increasingly apparent that there exist sev-
eral disease states for which a single causative pathogen
has not been established. Rather, such diseases may be
due to the abundances and relative amounts of a collec-
tion of microbes. Massively parallel sequencing tech-
nologies enable quick taxonomical surveys of an entire
community by sampling genes from bacterial 16S ribo-
somal DNA. In addition, to assess functional capability
(i.e., the abundances and diversity of metabolic pathways
or resistance genes), new computational tools can now
analyze short reads from whole-metagenome shotgun
sequencing, neatly sidestepping the challenges of read
assembly from a complex and uncultured community
[12–14]. These methods have been used extensively to
establish baseline healthy microbiome compositions,
which can then be statistically compared with samples
from patients with a disease phenotype. In addition, ma-
chine learning algorithms such as random forests can be
trained to discriminate between samples from healthy
and dysbiotic microbiomes of individuals with a variety
of health conditions. This approach ranks taxa in order
of discriminatory power and outputs a predictive model
capable of categorizing new microbiome samples as ei-
ther healthy or diseased. Machine learning has been ap-
plied to discover which species are important to normal
microbiome maturation [15], to malnutrition [16], to
protection against cholera [17], and even to development
of colon cancer [18]. In addition to high-throughput
analysis of gene content, the use of metatranscriptomics
[19], metaproteomics [20], and metametabolomics [21]
Fig. 1 Health consequences linked to the disruption of human-associated
adulthood. Red lines indicate that a single dose of antibiotics within the tim
red line indicates that multiple doses of antibiotics within the time period a
to gain additional insight into the state of the micro-
biome in various disease contexts has been the focus of
increasing interest. These applications underscore the
importance of an ecosystem-level view of the gut micro-
biota in the context of disease diagnosis and therapeutic
development.

The effect of antibiotics on the microbiome in
health and disease
Development and maturation of the microbiome
As a child grows, the commensal microbiota develops in
a predictable succession of species that is generalizable
across human populations [15]. The developing bacter-
iome, the bacterial component of the microbiome, has
been profiled many times, both taxonomically and in
terms of metabolic functions [15, 22, 23]. These profiles
have provided a view of how bacterial species are struc-
tured over time. Less is known about the gut-associated
eukaryotes and viruses that develop along with the bac-
teriome, although they are an important part of the gut
ecosystem [24, 25]. The disruption of the bacterial suc-
cession can be pathogenic [4–7]. Critical developmental
milestones for the microbiota (as well as for the child)
occur, in particular, during infancy and early childhood,
and both medical intervention and lack of such interven-
tion during these periods can have lifelong consequences
in the composition and function of the gut ecosystem
(Fig. 1). In this section, we discuss the instances in which
antibiotics are often used during development and adult-
hood, the effects of antibiotics on the microbiota, and
the implications of such effects for health and disease.

Birth
A child’s first contact with microbes is usually assumed
to occur after the rupture of the sterile amniotic sac.
However, the placenta and the first stool of infants have
been found to contain a full complement of microbes
microbiota involving antibiotic use during development and
e period has been linked to a health consequence, whereas a dotted
re required to observe a link
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[26, 27] and a labeled strain of Enterococcus faecium has
been shown to cross the umbilical cord in mice [28, 29].
These findings indicate that the first human–microbial
interaction occurs before birth, although the effects of
this interaction are unknown. Elucidating the function of
a prenatal microbiome is especially important; for ex-
ample, the majority of women in the USA are prescribed
antibiotics during pregnancy and delivery [30] and at
least 11 types of broad-spectrum antibiotics cross the
placenta and reach the fetus [31].
Although the effects of prenatal antibiotics on neo-

nates remain unclear, the microbes that first colonize a
child after birth are known to have a fundamental influ-
ence on the development of the microbiome. An infant’s
mode of delivery is a critical determinant of the compos-
ition of their gut microbiota. During vaginal delivery, in-
fants are colonized by the mothers’ vaginal microflora
(which is largely composed of Lactobacillus, Prevotella,
and Sneathia species), whereas a Caesarean delivery
omits transmission of vaginal microbes. Instead, the first
microbes colonizing an infant delivered by Caesarean
section are of environmental origin and generally associ-
ated with the skin (such as Staphylococcus, Corynebac-
terium, and Propionibacterium species) [32]. Intestinal
strains of Bifidobacterium spp. have been shown to be
transmitted vertically with vaginal but not Caesarean de-
livery [33]. Antibiotics are also routinely administered
perinatally during Caesarian sections, which is a con-
founder in these analyses, although it is possible to delay
the use of antibiotics until after umbilical clamping, thus
separating the effect of antibiotics used by the mother
from the effects of those used by the infant. The effects
of perinatal administration of antibiotics are likely to fur-
ther distinguish the microbiota composition of infants
delivered by Caesarian section from that of infants deliv-
ered vaginally. Postnatal antibiotics can also irreversibly
disrupt the natural microbiome succession, as an infant
is unlikely to be recolonized with a second dose of vagi-
nal microbes. The composition of the gut microbiome of
infants born by Caesarean section has been directly
linked with increased susceptibility to, and frequency of
infection by, methicillin-resistant Staphylococcus aureus
(MRSA) [34], which is a symptom of instability and low
diversity in the gut ecosystem. Caesarean sections are
also associated with a variety of long-term health prob-
lems, especially immunological disorders such as asthma
[35] and type 1 diabetes [36, 37]. Therefore, elucidating
the relationships between these disorders and the com-
position of the gut microbiome is critical to understand-
ing the risks associated with antibiotic intervention in
infants.
Premature birth (birth at <33 weeks of gestation) also

has a major influence on the gut microbiome and results
in a much greater prevalence of Proteobacteria than that
usually seen in the Firmicute-dominated microbiota of
infants born at full term [38]. This trend is aggravated
by the aggressive regimen of broad-spectrum antibiotics
given to premature infants (generally ampicillin and gen-
tamicin), whose frequency and dosage is usually limited
only by the toxicity of the drugs being used (Table 1).
Extended antibiotic treatment (>5 days) in premature in-
fants is associated with an increased risk of late-onset
sepsis (primarily caused by group B Streptoccoccus), nec-
rotizing enterocolitis, and overall mortality [39, 40].
Antibiotic use further shifts the composition of the gut
microbiota toward an increased abundance of Proteobac-
teria by depressing Bifidobacterium populations [41].
More generally, bacteriocidal drugs decrease the overall
diversity of the infants’ gut microbiota and select for
drug-resistant microbes [42, 43]. Alternative strategies
are needed to prevent and treat infections in premature
infants.

Early childhood
The effects of antibiotics on microbial succession, diver-
sity, and resistance can last long past infancy. In the first
two or three years of life, a healthy child’s microbiome
increases in diversity to resemble an adult microbiome
[15]. Bacteriophage (phage) titers start high and drop
over time, while eukaryotic viruses are acquired from
the environment and accumulate [24]. During this
period, microbes are continuously obtained from breast
milk, other food, and the environment [44]. When the
developmental trajectory of the microbiome is altered by
modifying factors, the digestive function can be nega-
tively affected, which can result in either undernutrition
or obesity. These phenotypes are often found in under-
developed and developed countries, respectively. The
undesirable microbiome configurations associated with
undernutrition and obesity are shaped via selection by
diet (calorie restriction or a high-calorie, low-quality
diet, respectively) [45], by exposure to disease (high fre-
quency of diarrhea or excessive hygiene) [46], and by the
use of medications such as antibacterial agents [47].
Severe calorie restriction during the first years of life

has devastating long-term consequences, including dam-
age to learning ability, physical stunting, and diminished
economic productivity in the survivors [48]. Undernutri-
tion has a distinct microbial signature consistent with a
delay in developmental progression of the microbiome.
In Bangladesh, this signature consists of a delay of
maturation, which is typically characterized by lower
abundances of Bifidobacterium longum and increased
abundances of Faecalibacterium prasunitzii, Lactobacil-
lus ruminis, and Dorea longicatena [16]. This immature
microbiome state is associated with inefficient nutrient
extraction from food and vulnerability to enteric infec-
tions, which perpetuate the malnourished state and often



Table 1 Main antibiotics used for pediatric or adult infections that modify the microbiome

Antibiotic Molecular
target

Class Resistance
mechanism

Effect on gut microbiota Effect on gut transcriptome Effect on gut proteome Effect on gut metabolome

Amoxicillin Transpeptidase β-lactam Altered target,
β-lactamase

Reduced abundance
enterobacteria [167]

NA NA NA

Ampicillin Transpeptidase β-lactam Altered target,
β-lactamase

Decreased bacterial diversity,
greater prevalence of
Enterobacter spp. [42]

Increased expression of genes
involved in tRNA biosynthesis,
translation, vitamin
biosynthesis, phosphate
transport, stress response,
proton motive force, antibiotic
resistance and phage [72];
reduced immune cell and
mitochondrial gene
expression [19]

Increased bacterial
glycosidase and mucinase
activity [168]

NA

Cefotaxime Transpeptidase β-lactam (third
generation
cephalosporin)

Altered target Decreased bacterial cell count
[169]; decreased abundance of
anaerobes and enterobacteria
[170]

NA NA NA

Chloramphenicol NA NA NA NA Increased expression of genes
involved in tRNA biosynthesis,
translation, vitamin
biosynthesis, phosphate
transport, stress response,
proton motive force, antibiotic
resistance and phage [72]

NA NA

Ciprofloxacin DNA gyrase Fluoroquinolone Altered target,
efflux

Decreased abundance of
enterobacteria [171]. Lower
bacterial diversity [68, 69],
decrease in short-chain fatty
acid (SCFA) producers [71]

Increased expression of genes
involved in tRNA biosynthesis,
translation, vitamin
biosynthesis, phosphate
transport, stress response,
proton motive force, antibiotic
resistance and phage [72]

NA NA

Clarithromycin
plus
metronidazole

Bacterial 50S
rRNA/DNA
synthesis

Macrolide
(clarithromycin)
and
nitroimidazole
(metronidazole)

Altered target/
drug
inactivation
(clarithromycin)
and efflux
(metronidazole)

Reduction in abundance of
Actinobacteria, partial recovery
of pretreatment state [70]

NA NA NA
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Table 1 Main antibiotics used for pediatric or adult infections that modify the microbiome (Continued)

Clindamycin Bacterial 50S
rRNA

Lincosamide Altered target Initial decreased abundance of
enterococci, streptococci, and
anaerobic bacteria,
subsequent recovery of
abundance of streptococci
and anaerobic bacteria [172];
reduced diversity of
Bacteroides spp. [74]; decrease
in abundance of bacteria
producing short-chain fatty
acids [71]

NA Increased production of
immunoglobulin proteins,
transthyretin and
chymotrypsin-like elastase
family proteins; decreased
production of proteins
involved in T-cell activation,
chymotrypsinogen B,
phospholipase A2,
myosin-1a and cytochrome
C [20]

Increased creatine and
creatinine, and levels of primary
bile acids, N-acetylated amino
acids, proline-hydroxyproline,
pyroglutamylglutamine,
myo-inositol, chiroinositol,
methyl-chiro-inositol and
γ-glutamyl amino acids, and
increased host tryptophan
metabolism; decreased levels
of secondary bile acids,
enterolactone, equol,
N-acetyl-aspartate, short-chain
fatty acids and sugar alcohols,
and decreased bacterial
tryptophan metabolism [84]

Erythromycin Translation Macrolide Efflux Decreases in abundance of
Streptococci, enterococci, and
enterobacteria; increases in
abundance of staphylococci;
alteration in abundance of
anaerobes [173]

Increased expression of genes
involved in tRNA biosynthesis,
translation, vitamin
biosynthesis, phosphate
transport, stress response,
proton motive force, antibiotic
resistance, and phage [72]

NA NA

Gentamicin Bacterial 30S
ribosome

Aminoglycoside Decreased
uptake, drug
modification

Decreased bacterial diversity,
greater prevalence of
Enterobacter spp. [42]

NA NA Increased levels
ofoligosaccharides and
secondary bile acids; decreased
levels of short-chain fatty acids,
phenolic acids, uracil, primary
bile acids, branched-chain
amino acids and aromatic
amino acids [85]

Meropenem Transpeptidase Carbapenem Altered target,
β-lactamase

Reduced abundance of
enterobacteria, streptococci,
Clostridia, Bacteroides spp., and
Gram-negative cocci [174]

NA NA NA

Streptomycin Bacterial 30S
ribosome

Aminoglycoside Decreased
uptake, drug
modification

Overall diversity decreases;
abundance of
Ruminococcaceae and
Bacteroidaceae increases [20]

NA Increased production of
peptidases, proteins involved
in actin polymerization,
transthyretin, chymotrypsin-like
elastase family proteins,
myosin-1a, and cytochrome C;
decreased production of
chymotrypsinogen B and
phospholipase A2 [20]

Bile acid metabolism, steroid
metabolism, and eicosanoid
synthesis affected; levels of
leukotriene B4 decrease [88]
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Table 1 Main antibiotics used for pediatric or adult infections that modify the microbiome (Continued)

Ticarcillin Transpeptidase β-lactam Altered target,
β-lactamase

Decreased abundance of
enterococci [175]

NA NA NA

Tigecycline Bacterial 30S
ribosome

Tetracycline Altered target,
efflux

Reduction in abundance of
enterococci, E. coli, lactobacilli,
and bifidobacteria and
increases in other
enterobacteria and yeasts
[176]; reduction in abundance
of Bacteroidetes and increases
in Proteobacteria [81]

NA NA NA

Vancomycin Peptidoglycan Glycopeptide Altered
peptidoglycan
target

Decreased bacterial diversity
[177]

Increased expression of genes
involved in tRNA biosynthesis,
translation, vitamin
biosynthesis, phosphate
transport, stress response,
proton motive force, antibiotic
resistance, and phage [72];
reduced immune cell and
mitochondrial gene
expression [19]

NA Leukotriene B4 affected [88];
increased levels of
oligosaccharides and
decreased levels of
short-chain fatty acids and
uracil [86]; low doses increase
levels of short-chain fatty
acids [53]

NA data not available
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make nutritional therapy ineffective [49]. Intriguingly, a
week-long course of either amoxicillin or cefdinir has
been found to improve nutritional recovery and reduce
mortality associated with severe acute malnutrition [50].
The combination of antibiotics and nutritional therapy
has become standard of care in outpatient management
of severe acute malnutrition [51]. The growth response
of malnourished patients to therapeutic-dose antibiotics
parallels the phenomenon where increased growth is ob-
served in animals given continuous, low-dose, broad-
spectrum antibiotics [52]. This effect, as well as more
subtle metabolic shifts toward adiposity, has been repro-
duced in mice [53]. Children from low-income countries
also show increased weight gain after antibiotic therapy
even when they are not clinically malnourished [54].
More research is needed to establish the mechanisms
underlying this treatment and to quantify its repercus-
sions in terms of antibiotic resistance.
On the other hand, obesity has grown to epidemic

proportions in developed countries. In 2015, over 30 %
of adults and 17 % of children in the USA were esti-
mated to have obesity [55, 56]. The contributions of diet
and lifestyle to weight gain are well publicized, but the
role of the gut microbes has only recently come to light.
A high-calorie diet shifts the microbial ecology toward
Firmicutes at the expense of Bacteroidetes, thus increas-
ing the energy harvesting capacity of the microbiota [57].
Microbes from obesity-discordant twins can reproduce the
respective phenotypes in gnotobiotic mice [58, 59], which
indicates a causal role for the microbiota in obesity. Anti-
biotic exposure during infancy has been found to increase
the risk of overweight in preadolescence for boys [47], al-
though this association was not found in a different popu-
lation. Similarly, the risk of developing type 2 diabetes
increases with repeated use of penicillins, macrolides,
cephalosporins, and quinolones [60, 61]. This association
could be confounded by the increased susceptibility of
people with diabetes to infections requiring antibiotic
treatment; however, this possibility is countered by the fact
that antifungals and antivirals, which are also more fre-
quently sought by these patients, do not increase the risk
of developing diabetes [61]. These findings support the no-
tion that the bacteriome has a strong but uncharacterized
role in metabolic disease. Further research is critical to
understand the mechanisms underlying these nutritional
and metabolic health effects of the bacteriome. This under-
standing will promote rational and frugal antibiotic use to
prevent microbiome disruption and enable the restoration
of the microbiota after antibiotic use.

Adulthood
The mature adult microbiome has been assessed across
many populations. The largest project in this area to
date is the Human Microbiome Project, which assessed
15–18 body sites in 242 participants in 2012 and con-
tinues to sample new individuals [62]. An important
finding from this project was that microbial populations
differ substantially among healthy individuals, and so far
no single microbial composition has been defined as
healthy, aside from a preponderance of Bacteroidetes
and Firmicutes. General trends observed in follow-up
studies include a decrease in microbiome diversity in de-
veloped countries compared with the diversity found in
hunter-gatherers or societies with restricted access to
Western medicine [63, 64]. This difference is often at-
tributed to the hygiene hypothesis, which in addition to
improved cleanliness points to the overuse of antibiotics
during infections as causal to a reduced microbiome
diversity in developed countries. A large range of antibi-
otics has indeed been shown to transiently or perman-
ently alter the composition of healthy adult microbiotas,
usually via depletion of one or several taxa (Table 1). Im-
portantly, the effects of an antibiotic on a microbial
community in vivo are likely to be depend on the phylo-
genetic composition of the community and are not pre-
dictable on the basis of the susceptibilities of isolated
members of the community to antibiotics observed
in vitro. Predicting the effects of antibiotics is compli-
cated by the widely varying concentration of the drug
across the body, different microbial growth stages [65],
antibiotic-associated induction of phages, interdepend-
ence among microbial taxa, and the existence of
“cheaters”, or susceptible microbes that are protected by
extracellular resistance enzymes produced by other mi-
crobes [66]. Repeated empirical measurements of the ef-
fects of an antibiotic on a microbial community are
therefore the best way to predict how a particular gut
microbiome will respond to a given antibiotic.
Oral amoxicillin exposure caused marked shifts in

microbiome composition that lasted approximately
30 days on average and were observed for more than
2 months in some of the treated individuals [67]. Large
shifts were also reported during an oral course of cipro-
floxacin, with the changes persisting for several weeks;
the extent of restoration of the baseline composition of
the microbiome was highly subject-dependent [68, 69].
A similar subject-dependence in the composition of the
microbiome after antibiotic therapy was also observed
with cefprozil [63]. The effect of antibiotics also differs
by body site, with the throat and saliva recovering their
initial microbial diversity after antibiotic therapy much
more quickly than the gut [70, 71]. In addition to their
effect on the phylogenetic makeup of the microbiome,
antibiotics select for resistance in the surviving gut
microbiota by stimulating the expression of anti-
biotic resistance, stress response, and phage genes
[72] (Table 1), as well as by increasing the abun-
dance of the resistance genes themselves [73, 74].
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These mobilized resistance genes are a reservoir for
drug resistance in pathogens [75].
There are multiple and poorly understood interactions

between the microbiome and immune system. Failure to
regulate immune responses to benign organisms is a
common one. Antibiotics interfere with the interaction
between the microbiome and immune system, resulting
in immunological disorders [35, 76]; antibiotics also in-
crease the host's susceptibility to pathogens [34, 46, 77,
78] (Table 2). Indeed, antibiotics have been shown to alter
the transcriptome and proteome of host tissues [19, 20]
(Table 1). Perturbations in the host proteome followed a
different timescale than perturbations in the species con-
tent of the microbiome, with the streptomycin-altered
proteome recovering before the microbiota but the
clindamycin-perturbed proteome remaining perturbed
after microbiota recovery [20]. In an elegant study by
Morgun et al. [19], the effects of antibiotics on the host
transcriptome were classified by their major cause. The
reduction in the number of bacteria in general caused a
decrease in gene expression in immune cells, whereas
the presence of antibiotics and a prevalence of antibiotic-
resistant bacteria together caused a reduction in mitochon-
drial gene expression and in the number of mitochondria
per cell. Although the ability of antibiotics to affect mito-
chondria (which is due to the bacterial origin of these or-
ganelles) was previously known, the researchers identified
the virulence-associated molecular pathways of Pseudo-
monas aeruginosa as important drivers of mitochondrial
gene loss and host cell death in this study. These and
other findings clearly show that antibiotics, alone and
through their effects on the gut microbiota, have import-
ant effects on host gene expression.
The majority of studies investigating the effects of an-

tibiotics on the gut metabolome have been focused on
susceptibility to infection, most notably with Clostridium
Table 2 Examples of antibiotic-induced changes in microbiota that

Feature Effect of antibiotics

Antibiotic
resistance

Enrichment for resistance genes and resistant organisms [73].
some cases, the rates of genetic exchange between microbes
increase [178]

Vitamin
production

Depletion of vitamin-producing bacteria

Digestion Changes in the proportions of relevant metabolic functions in
the microbiome [180]

Diversity Reduced number of different microbes [68]

Resilience Decreased availability of microbes to take over newly open
niches

Immune
regulation

Increased inappropriate immune activity

Composition Varying effects across taxa and for different durations
difficile and Salmonella typhimurium. The number of
deaths associated with C. difficile infection reaches
14,000 per year [79]. Infected patients receive high-dose,
extended-duration treatment with multiple antibiotics,
yet nevertheless up to 65 % of patients relapse [80]. Re-
currence of C. difficile-associated diarrhea is associated
with a low-diversity microbiome [77]. Exposure to either
clindamycin or tigecycline decreases microbiome diver-
sity and increases susceptibility to C. difficile infection
[78, 81]. Similarly, streptomycin and vancomycin use has
been shown to cause an increased susceptibility to S.
typhimurium infection [46]. The release of sugars and
bile acids due to antibiotic-induced depletion of the
metabolic activities of gut commensals has been pro-
posed as a potential mechanism for this effect [82, 83].
These nutrients provide an ecological niche that can
be exploited by pathogens. Multiple studies in which
high-throughput metabolomics was performed on an
antibiotic-treated microbiome have shown that high
concentrations of antibiotics reduce or eliminate most
products of bacterial metabolism (including short-
chain fatty acids and secondary bile acids), whereas
their precursors (including oligosaccharides, sugar al-
cohols, and primary bile acids) build up [21, 84–87]. In
addition, several compounds of the bile acid, steroid,
and tryptophan metabolic pathways were significantly
altered by antibiotic treatment [88, 89] (Table 1). These
metabolic effects seem to be independent of antibiotic
class and rather depend on antibiotic concentration, as
subtherapeutic doses of penicillin, vancomycin, peni-
cillin plus vancomycin, or chlortetracycline actually in-
crease the concentration of short-chain fatty acids [53].
Multiple metabolic routes exist for C. difficile to ex-
ploit following antibiotic treatment. In particular, anti-
biotics deplete the bile acid-hydroxylating activity of
Clostridium scindens, which is required for protection
lead to disease

Pathological consequence

In Multidrug-resistant tuberculosis. Carbapenem-resistant Escherichia
coli infection [79]

Broad-spectrum antibiotic use (especially β-lactams with an N-
methylthiotetrazole moiety) can cause vitamin K deficiency leading
to hypoprothrombinemia and uncontrolled bleeding [179]

Altered efficiency of nutrient extraction from food that can
contribute to obesity [45, 59]

Lower diversity reduces ecological stability and resistance to
pathogens. Increased susceptibility to infection and diarrhea
[34, 46, 77, 78]

Each course of antibiotic acts on a new ecology. Recovery to a
stable state, and to a particular stable state, is highly individual [63]

Asthma, allergies and autoimmune diabetes have all been linked to
antibiotic use [6, 10, 61]

See Table 1 [41, 67–69, 72]
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against C. difficile infection [90]. As an additional
mechanism promoting infection, antibiotics may en-
hance bacterial translocation out of the gut [91]. These
findings show that provision of broad-spectrum antibi-
otics can be counterproductive in the treatment of re-
calcitrant, antibiotic-resistant infections. Alternative
strategies such as fecal microbiota transplants (FMTs),
which are discussed below, have been used to treat C.
difficile with a cure rate higher than 90 % [92].

Alternative approaches for modulating the gut
microbiota
Targeting pathogens while maintaining a healthy
microbiota
The examples highlighted above make it clear that over-
use of antibiotics can often have negative effects on the
host through collateral damage to commensal microbes.
As an alternative to broad-spectrum drugs, the develop-
ment of narrow-spectrum treatments that specifically re-
duce the capacity of pathogens to cause disease while
leaving commensals unharmed has been the focus of in-
creasing interest. The enormous variety of existing anti-
virulence strategies is briefly summarized here. A more
complete discussion of antivirulence therapeutics can be
found elsewhere [93–96].

Anti-quorum sensing
Quorum sensing (QS) is the mechanism by which bac-
teria coordinate behavior as a function of population
density. The concentration of a continuously secreted
signaling molecule serves as a marker of local population
size and virulence programs are upregulated or down-
regulated as a function of this concentration [97]. QS
plays a critical part in the virulence of many pathogens,
including Vibrio cholerae and P. aeruginosa [98]. QS can
be pharmacologically inhibited in a variety of ways, in-
cluding destruction of the QS signal [99], acceleration of
turnover of key QS proteins [100–102], and competition
with the QS signal for binding to key regulatory proteins
[103–105]. However, P. aeruginosa variants resistant to
such quorum-quenching drugs have been recently iden-
tified [106, 107] and development of this resistance is
thought to be caused by a selective disadvantage in those
bacteria lacking QS machinery, even when an infection
is not occurring [108]. These observations underscore
the risks of having an anthropocentric view of “viru-
lence” pathways and highlight a need for holistic under-
standing of the roles of such pathways within the cell to
develop robust antivirulence strategies.

Anti-toxin production
Toxin production is critical to the virulence of a wide var-
iety of species. Small-molecule inhibitors of C. difficile
major virulence factor toxin B [109], Bacillus anthracis
lethal factor [110], B. anthracis protective antigen channel
[111], and Escherichia coli verotoxin [112] have been
developed as a countermeasure to the activity of these
bacterial toxins. Taking inspiration from the body’s own
defense repertoire and the historical use of antisera
against bacterial infections [113], antibodies against
Shiga [114, 115] and anthrax [116] toxins have also
been developed. Small-molecule inhibitors of ToxT, the
transcription factor controlling the production of chol-
era toxin, have been shown to be effective in mouse
models, though associated with the development of re-
sistance [117, 118]. Finally, inhibitors of type 2, [119],
type 3 [119–125], and type 4 [126] secretion systems
have been identified, which collectively inhibit the viru-
lence of Yersinia pseudotuberculosis, Chlamidophila
pneumoniae, Chlamidia trachomatis, Shigella flexneri,
S. typhimurium, E. coli, and Brucella spp. Whether in-
hibition of toxin production is a stable strategy against
virulence is unclear because although toxin producers are
at an increased metabolic burden relative to nonproducers
when the toxin is ineffective, this environment provides
a strong selective pressure for anti-toxin-resistant
mutants or even for mutants that overexpress the
toxin [108].

Other antivirulence strategies
Pilus formation is critical to the adherence of uropatho-
genic E. coli to host cell tissue and several compounds
that inhibit pili (pilicides) have been effective against this
strain [127–130]. Carotenoid production is important to
the removal of host reactive oxygen species by Staphylo-
coccus aureus and inhibitors of carotenoid production
reduce the virulence of this organism [131]. The produc-
tion of biofilms is important to the virulence of several
pathogens and also interferes with the delivery of antibi-
otics to their target site. Anti-biofilm compounds, in
addition to restricting virulence when used as monother-
apy [132], could be used in conjunction with broad-
spectrum antibiotics or orthogonal antivirulence therapies.
Finally, siderophores facilitate the scavenging of rare iron
from the host environment and are therefore critical to
the survival of several pathogens, including P. aeruginosa.
Compounds that inactivate siderophores therefore repre-
sent an evolutionarily robust antivirulence strategy [133].
Taken together, antivirulence therapies are a promising
alternative to traditional broad-spectrum drugs owing to
reduction of potential off-target effects as well as reduc-
tion in the number of organisms under pressure to develop
resistance, even if the ideal “evolution-proof” therapy has
not been found.

Restoring or enhancing the microbiota
In contrast to approaches focused on targeting certain
members of the gut microbiota, strategies have been
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developed to prevent enteric infections through the de-
livery of additional or replacement species to the gut to
increase its resilience to infection. These strategies in-
clude the use of probiotics, fecal microbiota transplants,
and phage therapy.

Probiotics
Probiotics are defined as “live microorganisms which
when administered in adequate amounts confer a health
benefit on the host” [134]. Probiotics are often seen as
an approach to restore or improve a dysbiotic micro-
biota [135] and are an effective treatment for a wide
range of gastrointestinal diseases, including C. difficile
infection [136], antibiotic-associated diarrhea [137–139],
and acute infectious diarrhea [140]. Lactobacillus species
are used as probiotics [141], with L. salivarius being ef-
fective against Listeria infection [142] and L. reuteri be-
ing preventive against antibiotic-associated diarrhea
[143]. In addition, Bifidobacterium animalis has been
shown to protect against infections in infants [144] and
E. coli Nissle, in addition to being an effective treatment
for Crohn’s disease and inflammatory bowel disease
[145], has been shown to reduce enteric counts of
multidrug-resistant E. coli [146]. Most meta-analyses of
probiotic use agree that while probiotics can be effective
against a range of gut dysbioses, more specific data are
needed to determine which probiotics are best for par-
ticular patient groups, especially as extensive inter-
individual variation exists in the composition of gut
microbiota.
Advances in genetic engineering have fueled a growing

interest in augmenting the gut microbiota with engi-
neered strains to expand gut function or resilience be-
yond what can be achieved by administration of
unmodified strains. Engineered Lactococcus lactis has
been used to express and deliver antimicrobial peptides
against E. faecium, reducing pathogen counts by 10,000-
fold in vitro [147]. Excitingly, a recombinant invasive
strain of L. lactis was used to transfect host cells with
engineered DNA in vivo, which led to stimulation of tu-
berculosis antigen production in mice [148]. Additionally,
“sense and destroy” probiotics, which encode sensors for
biomarkers of pathogenic strains, have been developed.
Upon detection of a pathogen, these probiotics activate a
genetic program to kill their target. Two recent studies
engineered probiotics to detect 3-acyl-homoserine lactone
(used in QS) to specifically target P. aeruginosa. Pathogen
killing was mediated by expression of engineered anti-
microbial peptides in one instance [149] and by increased
motility and expression of biofilm degradation enzymes
and antimicrobial peptides in the second [150]. Such
“smart” therapeutics promise to reduce the development
of resistance and off-target effects by restricting treatment
to strains of interest in a time-specific and space-specific
manner. However, production of killing compounds is not
the only mechanism by which engineered probiotics can
ward off infections. Increased understanding of nutrient
resource (e.g., carbohydrate) utilization within the gut is
enabling the development of strains that can outcompete
pathogens when available metabolic niches are colonized
[82, 151]. Although substantial challenges regarding the
safety, containment, and consumer acceptance of engi-
neered probiotics remain to be fully addressed, the
therapeutic potential of probiotics enabled by genetic
engineering of the gut microbiome is enormous.

Fecal microbiota transplants
For opportunistic, antibiotic-resistant infections such as
C. difficile infections, alternative therapies to antibiotics
are far superior to antibiotic-based approaches [152,
153]. The transfer of fecal microbes from a healthy per-
son to a patient has been used as a remedy for recurrent
diarrhea for at least 1700 years [154]. This approach is
the most comprehensive and crude form of probiotic
therapy, as an entire balanced community is adminis-
tered at once, without necessarily knowing which com-
ponents are valuable. Healthy fecal microbes are thought
to suppress C. difficile blooms through niche competi-
tion and, potentially, through the production of yet un-
identified growth inhibitors. In the near term, FMTs
might become a critical tool to limit the spread of anti-
biotic resistance and lengthen the time to obsolescence
for remaining viable antibiotics. In the future, FMTs
might be replaced by defined preparations of their con-
stituent therapeutic factors as detailed knowledge of the
ecology of the gut microbiota increases.

Phage therapy
In addition to its bacterial inhabitants, the gut contains
an equally fascinating viral community that exerts a pro-
found effect on the microbiota and, in turn, on the host.
As the natural predators of bacteria, phages were used
to treat bacterial infections before the advent of antibi-
otics, after which the use of phage therapy was restricted
to the USSR [155]. As antibiotics have become less ef-
fective, phages have been the focus of renewed thera-
peutic interest as they are often highly specific to their
target bacteria (which reduces off-target effects on the
rest of the microbiota) and are self-replicating (which re-
duces the costs of producing phage-based therapeutics
relative to the costs of producing small-molecule thera-
peutics and also enables co-evolution of the therapies
and their pathogen targets). Phages active against E. fae-
calis [156], Bacillus cereus [157], and P. aeruginosa [158]
have been identified, among many others. As is the case
for antibiotics, the development of resistance to phages
is evolutionarily favorable, but phage-resistant mutants
have been observed to be less virulent than their phage-
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susceptible wild type for some bacteria/phage combina-
tions [159, 160]. Excitingly, phages have also been the
subject of genetic engineering to improve their function
in modulating the gut ecosystem [161]. In particular, the
expression of a biofilm-degrading enzyme on the gen-
ome of T7 phages enabled simultaneous reduction of
biofilm and bacterial lysis in a positive-feedback manner
[162]. T7 phages have also been engineered to encode
quorum-quenching enzymes as a defense against biofilm
formation [163]. Recently, the natural transformation
capacity of phages has been coupled with programmable
nucleases to enable the generation of phages that specific-
ally kill bacteria with undesirable genomic sequences, such
as antibiotic resistance genes or virulence factors [164,
165]. By programming sequences from resistance genes
and lytic phages as substrates for nucleases, Yosef et al.
[166] generated a system with a positive selective pressure
for loss of antibiotic resistance. On the basis of these re-
ports, we envision that the first diseases for which phage
therapy would be appropriate are those whose bacterial
cause is well-defined, refractory to antibiotics, and access-
ible to phages, such as diseases caused by Mycobacterium
tuberculosis, V. cholerae, C. difficile, enteroaggregative E.
coli, and diffusely adherent E. coli. Although substantial
hurdles involving resistance to both phages and engi-
neered nucleases need to be cleared, natural and engi-
neered phages hold great promise as future tools in the
fight against pathogens and dysbiotic community states.

Conclusions and future directions
Antibiotics shape the ecology of the gut microbiome in
profound ways, causing lasting changes to developing
and mature microbiotas. The application of next-
generation sequencing has enabled detailed views of the
side effects these drugs have on commensal populations
during treatment of infections. In addition to the in-
creased threat of resistance to antibiotics caused by the
overuse of these compounds, these important side ef-
fects make it clear that overuse of broad-spectrum anti-
biotics must be quickly phased out in favor of more
precise approaches and must be complemented by effi-
cient methods to restore the microbiome after injury.
Fortunately, recent advances in the development of
narrow-spectrum antivirulence compounds, coupled
with a renewed interest in the use of probiotics, FMTs
and phage therapy, bring new hope to defeating disease-
causing bacteria while limiting collateral damage to the
microbiota. Looking ahead, we anticipate that individual-
ized ecological and metabolic models of the microbiome
will have an important role in informing treatment op-
tions during dysbiosis, and that these treatment options
will be expanded to include evolution-resistant antiviru-
lence compounds, robust curated communities of
healthy gut commensals, and “smart” living therapeutics
that sense and respond to disease states with minimal
patient and doctor intervention. Collectively, advance-
ments in our understanding of the effects of antibiotics
on gut commensals are leading to new insights into this
complex and important microbial community and are
driving new therapeutic strategies in our fight against
pathogenic bacteria.
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