68 research outputs found

    Scaled penalization of Brownian motion with drift and the Brownian ascent

    Full text link
    We study a scaled version of a two-parameter Brownian penalization model introduced by Roynette-Vallois-Yor in arXiv:math/0511102. The original model penalizes Brownian motion with drift hRh\in\mathbb{R} by the weight process (exp(νSt):t0){\big(\exp(\nu S_t):t\geq 0\big)} where νR\nu\in\mathbb{R} and (St:t0)\big(S_t:t\geq 0\big) is the running maximum of the Brownian motion. It was shown there that the resulting penalized process exhibits three distinct phases corresponding to different regions of the (ν,h)(\nu,h)-plane. In this paper, we investigate the effect of penalizing the Brownian motion concurrently with scaling and identify the limit process. This extends a result of Roynette-Yor for the ν<0, h=0{\nu<0,~h=0} case to the whole parameter plane and reveals two additional "critical" phases occurring at the boundaries between the parameter regions. One of these novel phases is Brownian motion conditioned to end at its maximum, a process we call the Brownian ascent. We then relate the Brownian ascent to some well-known Brownian path fragments and to a random scaling transformation of Brownian motion recently studied by Rosenbaum-Yor.Comment: 32 pages; made additions to Section

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Confounders in the assessment of the renal effects associated with low-level urinary cadmium: an analysis in industrial workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Associations of proteinuria with low-level urinary cadmium (Cd) are currently interpreted as the sign of renal dysfunction induced by Cd. Few studies have considered the possibility that these associations might be non causal and arise from confounding by factors influencing the renal excretion of Cd and proteins.</p> <p>Methods</p> <p>We examined 184 healthy male workers (mean age, 39.5 years) from a zinc smelter (n = 132) or a blanket factory (n = 52). We measured the concentrations of Cd in blood (B-Cd) and the urinary excretion of Cd (U-Cd), retinol-binding protein (RBP), protein HC and albumin. Associations between biomarkers of metal exposure and urinary proteins were assessed by simple and multiple regression analyses.</p> <p>Results</p> <p>The medians (interquartile range) of B-Cd (μg/l) and U-Cd (μg/g creatinine) were 0.80 (0.45-1.16) and 0.70 (0.40-1.3) in smelter workers and 0.66 (0.47-0.87) and 0.55 (0.40-0.90) in blanket factory workers, respectively. Occupation had no influence on these values, which varied mainly with smoking habits. In univariate analysis, concentrations of RBP and protein HC in urine were significantly correlated with both U-Cd and B-Cd but these associations were substantially weakened by the adjustment for current smoking and the residual influence of diuresis after correction for urinary creatinine. Albumin in urine did not correlate with B-Cd but was consistently associated with U-Cd through a relationship, which was unaffected by smoking or diuresis. Further analyses showed that RBP and albumin in urine mutually distort their associations with U-Cd and that the relationship between RBP and Cd in urine was almost the replicate of that linking RBP to albumin</p> <p>Conclusions</p> <p>Associations between proteinuria and low-level urinary Cd should be interpreted with caution as they appear to be largely driven by diuresis, current smoking and probably also the co-excretion of Cd with plasma proteins.</p

    Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking

    Get PDF
    Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term "in vivo behavioral tracking," we track individuals' movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants' tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent) gender, and that participants' gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups). Furthermore, participants' proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics

    Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice

    Get PDF
    Background: In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear. Methodology/Principal Findings: In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation. Conclusion/Significance: These findings suggest that the continuous production of adult-generated neurons is involved i

    Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping

    Get PDF
    To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks

    The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants

    Get PDF
    Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease. © 2014 Porcel et al
    corecore