658 research outputs found

    The role of the right inferior frontal gyrus in the pathogenesis of post-stroke psychosis.

    Get PDF
    Psychotic symptoms have previously been reported following right hemisphere brain injury. We sought to identify the specific neuroanatomical basis of delusions following stroke by studying a series of patients with post-stroke psychosis. Lesion overlap analysis was conducted on three individuals with delusions following right hemisphere stroke. These cases were compared with a control group of patients with similar anatomical damage. The main outcome measures were presence of delusions and presence of behavioural susceptibility. The right inferior frontal gyrus and underlying white matter, including the superior longitudinal fasciculus and anterior corona radiata, were involved in all three cases. All three had a preexisting untreated psychiatric disorder. In contrast, only one of nine control cases with equivalent lesions had evidence of previous psychiatric disorder (p = 0.0182, Fisher’s exact test), and this was being treated at the time of stroke. We provide clinical evidence from patients with structural brain lesions implicating damage to the right inferior frontal lobe in the generation of persistent psychosis following stroke. We suggest that preexisting psychiatric disease provided a behavioural susceptibility to develop delusions in these individuals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00415-014-7242-x) contains supplementary material, which is available to authorized users

    Algorithms for optimizing drug therapy

    Get PDF
    BACKGROUND: Drug therapy has become increasingly efficient, with more drugs available for treatment of an ever-growing number of conditions. Yet, drug use is reported to be sub optimal in several aspects, such as dosage, patient's adherence and outcome of therapy. The aim of the current study was to investigate the possibility to optimize drug therapy using computer programs, available on the Internet. METHODS: One hundred and ten officially endorsed text documents, published between 1996 and 2004, containing guidelines for drug therapy in 246 disorders, were analyzed with regard to information about patient-, disease- and drug-related factors and relationships between these factors. This information was used to construct algorithms for identifying optimum treatment in each of the studied disorders. These algorithms were categorized in order to define as few models as possible that still could accommodate the identified factors and the relationships between them. The resulting program prototypes were implemented in HTML (user interface) and JavaScript (program logic). RESULTS: Three types of algorithms were sufficient for the intended purpose. The simplest type is a list of factors, each of which implies that the particular patient should or should not receive treatment. This is adequate in situations where only one treatment exists. The second type, a more elaborate model, is required when treatment can by provided using drugs from different pharmacological classes and the selection of drug class is dependent on patient characteristics. An easily implemented set of if-then statements was able to manage the identified information in such instances. The third type was needed in the few situations where the selection and dosage of drugs were depending on the degree to which one or more patient-specific factors were present. In these cases the implementation of an established decision model based on fuzzy sets was required. Computer programs based on one of these three models could be constructed regarding all but one of the studied disorders. The single exception was depression, where reliable relationships between patient characteristics, drug classes and outcome of therapy remain to be defined. CONCLUSION: Algorithms for optimizing drug therapy can, with presumably rare exceptions, be developed for any disorder, using standard Internet programming methods

    Antibody-based protection against HIV infection by vectored immunoprophylaxis

    Get PDF
    Despite tremendous efforts, development of an effective vaccine against human immunodeficiency virus (HIV) has proved an elusive goal. Recently, however, numerous antibodies have been identified that are capable of neutralizing most circulating HIV strains. These antibodies all exhibit an unusually high level of somatic mutation, presumably owing to extensive affinity maturation over the course of continuous exposure to an evolving antigen. Although substantial effort has focused on the design of immunogens capable of eliciting antibodies de novo that would target similar epitopes, it remains uncertain whether a conventional vaccine will be able to elicit analogues of the existing broadly neutralizing antibodies. As an alternative to immunization, vector-mediated gene transfer could be used to engineer secretion of the existing broadly neutralizing antibodies into the circulation. Here we describe a practical implementation of this approach, which we call vectored immunoprophylaxis (VIP), which in mice induces lifelong expression of these monoclonal antibodies at high concentrations from a single intramuscular injection. This is achieved using a specialized adeno-associated virus vector optimized for the production of full-length antibody from muscle tissue. We show that humanized mice receiving VIP appear to be fully protected from HIV infection, even when challenged intravenously with very high doses of replication-competent virus. Our results suggest that successful translation of this approach to humans may produce effective prophylaxis against HIV

    Implementing health research through academic and clinical partnerships : a realistic evaluation of the Collaborations for Leadership in Applied Health Research and Care (CLAHRC)

    Get PDF
    Background: The English National Health Service has made a major investment in nine partnerships between higher education institutions and local health services called Collaborations for Leadership in Applied Health Research and Care (CLAHRC). They have been funded to increase capacity and capability to produce and implement research through sustained interactions between academics and health services. CLAHRCs provide a natural ‘test bed’ for exploring questions about research implementation within a partnership model of delivery. This protocol describes an externally funded evaluation that focuses on implementation mechanisms and processes within three CLAHRCs. It seeks to uncover what works, for whom, how, and in what circumstances. Design and methods: This study is a longitudinal three-phase, multi-method realistic evaluation, which deliberately aims to explore the boundaries around knowledge use in context. The evaluation funder wishes to see it conducted for the process of learning, not for judging performance. The study is underpinned by a conceptual framework that combines the Promoting Action on Research Implementation in Health Services and Knowledge to Action frameworks to reflect the complexities of implementation. Three participating CLARHCS will provide indepth comparative case studies of research implementation using multiple data collection methods including interviews, observation, documents, and publicly available data to test and refine hypotheses over four rounds of data collection. We will test the wider applicability of emerging findings with a wider community using an interpretative forum. Discussion: The idea that collaboration between academics and services might lead to more applicable health research that is actually used in practice is theoretically and intuitively appealing; however the evidence for it is limited. Our evaluation is designed to capture the processes and impacts of collaborative approaches for implementing research, and therefore should contribute to the evidence base about an increasingly popular (e.g., Mode two, integrated knowledge transfer, interactive research), but poorly understood approach to knowledge translation. Additionally we hope to develop approaches for evaluating implementation processes and impacts particularly with respect to integrated stakeholder involvement

    Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission

    Get PDF
    The vast majority of new HIV infections result from relatively inefficient transmission of the virus across mucosal surfaces during sexual intercourse. A consequence of this inefficiency is that small numbers of transmitted founder viruses initiate most heterosexual infections. This natural bottleneck to transmission has stimulated efforts to develop interventions that are aimed at blocking this step of the infection process. Despite the promise of this strategy, clinical trials of preexposure prophylaxis have had limited degrees of success in humans, in part because of lack of adherence to the recommended preexposure treatment regimens. In contrast, a number of existing vaccines elicit systemic immunity that protects against mucosal infections, such as the vaccines for influenza and human papilloma virus. We recently demonstrated the ability of vectored immunoprophylaxis (VIP) to prevent intravenous transmission of HIV in humanized mice using broadly neutralizing antibodies. Here we demonstrate that VIP is capable of protecting humanized mice from intravenous as well as vaginal challenge with diverse HIV strains despite repeated exposures. Moreover, animals receiving VIP that expresses a modified VRC07 antibody were completely resistant to repetitive intravaginal challenge by a heterosexually transmitted founder HIV strain, suggesting that VIP may be effective in preventing vaginal transmission of HIV between humans

    Interpreting and reporting ⁴⁰Ar/³⁹Ar geochronologic data

    Get PDF
    The ⁴⁰Ar/³⁹Ar dating method is among the most versatile of geochronometers, having the potential to date a broad variety of K-bearing materials spanning from the time of Earth’s formation into the historical realm. Measurements using modern noble-gas mass spectrometers are now producing ⁴⁰Ar/³⁹Ar dates with analytical uncertainties of ∼0.1%, thereby providing precise time constraints for a wide range of geologic and extraterrestrial processes. Analyses of increasingly smaller subsamples have revealed age dispersion in many materials, including some minerals used as neutron fluence monitors. Accordingly, interpretive strategies are evolving to address observed dispersion in dates from a single sample. Moreover, inferring a geologically meaningful “age” from a measured “date” or set of dates is dependent on the geological problem being addressed and the salient assumptions associated with each set of data. We highlight requirements for collateral information that will better constrain the interpretation of ⁴⁰Ar/³⁹Ar data sets, including those associated with single-crystal fusion analyses, incremental heating experiments, and in situ analyses of microsampled domains. To ensure the utility and viability of published results, we emphasize previous recommendations for reporting ⁴⁰Ar/³⁹Ar data and the related essential metadata, with the amendment that data conform to evolving standards of being findable, accessible, interoperable, and reusable (FAIR) by both humans and computers. Our examples provide guidance for the presentation and interpretation of ⁴⁰Ar/³⁹Ar dates to maximize their interdisciplinary usage, reproducibility, and longevity
    corecore