172 research outputs found

    Intrauterine Growth Restriction Is a Direct Consequence of Localized Maternal Uropathogenic Escherichia coli Cystitis

    Get PDF
    Despite the continually increasing rates of adverse perinatal outcomes across the globe, the molecular mechanisms that underlie adverse perinatal outcomes are not completely understood. Clinical studies report that 10% of pregnant women will experience a urinary tract infection (UTI) and there is an association of UTIs with adverse perinatal outcomes. We introduced bacterial cystitis into successfully outbred female mice at gestational day 14 to follow pregnancy outcomes and immunological responses to determine the mechanisms that underlie UTI-mediated adverse outcomes. Outbred fetuses from mothers experiencing localized cystitis displayed intrauterine growth restriction (20–80%) as early as 48 hours post-infection and throughout the remainder of normal gestation. Robust infiltration of cellular innate immune effectors was observed in the uteroplacental tissue following introduction of UTI despite absence of viable bacteria. The magnitude of serum proinflammatory cytokines is elevated in the maternal serum during UTI. This study demonstrates that a localized infection can dramatically impact the immunological status as well as the function of non-infected distal organs and tissues. This model can be used as a platform to determine the mechanism(s) by which proinflammatory changes occur between non-contiguous genitourinary organ

    Comparative study of imaging at 3.0 T versus 1.5 T of the knee

    Get PDF
    The objectives of the study were to compare MR imaging at 1.5 and 3.0 T in the same patients concerning image quality and visualization of cartilage pathology and to assess diagnostic performance using arthroscopy as a standard of reference. Twenty-six patients were identified retrospectively as having comparative 1.5 and 3.0 T MR studies of the knee within an average of 102 days. Standard protocols included T1-weighted and fat-saturated intermediate-weighted fast spin-echo sequences in three planes; sequence parameters had been adjusted to account for differences in relaxation at 3.0 T. Arthroscopy was performed in 19 patients. Four radiologists reviewed each study independently, scored image quality, and analyzed pathological findings. Sensitivities, specificities, and accuracies in diagnosing cartilage lesions were calculated in the 19 patients with arthroscopy, and differences between 1.5 and 3.0 T exams were compared using paired Student’s t tests with a significance threshold of p < 0.05. Each radiologist scored the 3.0 T studies higher than those obtained at 1.5 T in visualizing anatomical structures and abnormalities (p < 0.05). Using arthroscopy as a standard of reference, diagnosis of cartilage abnormalities was improved at 3.0 T with higher sensitivity (75.7% versus 70.6%), accuracy (88.2% versus 86.4%), and correct grading of cartilage lesions (51.3% versus 42.9%). Diagnostic confidence scores were higher at 3.0 than 1.5 T (p < 0.05) and signal-to-noise ratio at 3.0 T was approximately twofold higher than at 1.5 T. MRI at 3.0 T improved visualization of anatomical structures and improved diagnostic confidence compared to 1.5 T. This resulted in significantly better sensitivity and grading of cartilage lesions at the knee

    Ketamine Influences CLOCK:BMAL1 Function Leading to Altered Circadian Gene Expression

    Get PDF
    Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies

    Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    Get PDF
    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΔ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection

    Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease

    Get PDF
    One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models

    Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults

    Get PDF
    Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Peer reviewe
    corecore