18,479 research outputs found
DTN routing optimised by human routines: the HURRy protocol
This paper proposes the HURRy (HUman Routines used for Routing) protocol, which infers and benefits from the social behaviour of nodes in disruptive networking environments. HURRy incorporates the contact duration to the information retrieved from historical encounters among neighbours, so that smarter routing decisions can be made. The specification of HURRy is based on the outcomes of a thorough experiment, which highlighted the importance of distinguishing between short and long contacts and deriving mathematical relations in order to optimally prioritize the available routes to a destination. HURRy introduces a novel and more meaningful rating system to evaluate the quality of each contact and overcome the limitations of other routing approaches in social environments.European Commission, Horizon 2020, Grant Agreement number 645124, UMOBIL
On All-loop Integrands of Scattering Amplitudes in Planar N=4 SYM
We study the relationship between the momentum twistor MHV vertex expansion
of planar amplitudes in N=4 super-Yang-Mills and the all-loop generalization of
the BCFW recursion relations. We demonstrate explicitly in several examples
that the MHV vertex expressions for tree-level amplitudes and loop integrands
satisfy the recursion relations. Furthermore, we introduce a rewriting of the
MHV expansion in terms of sums over non-crossing partitions and show that this
cyclically invariant formula satisfies the recursion relations for all numbers
of legs and all loop orders.Comment: 34 pages, 17 figures; v2: Minor improvements to exposition and
discussion, updated references, typos fixe
Successive spin-flop transitions of a Neel-type antiferromagnet Li2MnO3 single crystal with a honeycomb lattice
We have carried out high magnetic field studies of single-crystalline Li2MnO3, a honeycomb lattice antiferromagnet. Its magnetic phase diagram was mapped out using magnetization measurements at applied fields up to 35 T. Our results show that it undergoes two successive meta-magnetic transitions around 9 T fields applied perpendicular to the ab plane (along the c* axis). These phase transitions are completely absent in the magnetization measured with the field applied along the ab plane. In order to understand this magnetic phase diagram, we developed a mean-field model starting from the correct Neel-type magnetic structure, consistent with our single crystal neutron diffraction data at zero field. Our model calculations succeeded in explaining the two meta-magnetic transitions that arise when Li2MnO3 enters two different spin-flop phases from the zero field Neel phase.open1187Nsciescopu
Microscopics of Extremal Kerr from Spinning M5 Branes
We show that the spinning magnetic one-brane in minimal five-dimensional
supergravity admits a decoupling limit that interpolates smoothly between a
self-dual null orbifold of AdS_3 \times S^2 and the near-horizon limit of the
extremal Kerr black hole times a circle. We use this interpolating solution to
understand the field theory dual to spinning M5 branes as a deformation of the
Discrete Light Cone Quantized (DLCQ) Maldacena-Stominger-Witten (MSW) CFT. In
particular, the conformal weights of the operators dual to the deformation
around AdS_3 \times S^2 are calculated. We present pieces of evidence showing
that a CFT dual to the four-dimensional extremal Kerr can be obtained from the
deformed MSW CFT.Comment: 5 page
Dual conformal constraints and infrared equations from global residue theorems in N=4 SYM theory
Infrared equations and dual conformal constraints arise as consistency
conditions on loop amplitudes in N=4 super Yang-Mills theory. These conditions
are linear relations between leading singularities, which can be computed in
the Grassmannian formulation of N=4 super Yang-Mills theory proposed recently.
Examples for infrared equations have been shown to be implied by global residue
theorems in the Grassmannian picture. Both dual conformal constraints and
infrared equations are mapped explicitly to global residue theorems for
one-loop next-to-maximally-helicity-violating amplitudes. In addition, the
identity relating the BCFW and its parity-conjugated form of tree-level
amplitudes, is shown to emerge from a particular combination of global residue
theorems.Comment: 21 page
Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells
Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al
Consistency Conditions on S-Matrix of Spin 1 Massless Particles
Motivated by new techniques in the computation of scattering amplitudes of
massless particles in four dimensions, like BCFW recursion relations, the
question of how much structure of the S-matrix can be determined from purely
S-matrix arguments has received new attention. The BCFW recursion relations for
massless particles of spin 1 and 2 imply that the whole tree-level S-matrix can
be determined in terms of three-particle amplitudes (evaluated at complex
momenta). However, the known proofs of the validity of the relations rely on
the Lagrangian of the theory, either by using Feynman diagrams explicitly or by
studying the effective theory at large complex momenta. This means that a
purely S-matrix theoretic proof of the relations is still missing. The aim of
this paper is to provide such a proof for spin 1 particles by extending the
four-particle test introduced by P. Benincasa and F. Cachazo in
arXiv:0705.4305[hep-th] to all particles. We show how n-particle tests imply
that the rational function built from the BCFW recursion relations possesses
all the correct factorization channels including holomorphic and
anti-holomorphic collinear limits. This in turn implies that they give the
correct S-matrix of the theory.Comment: 24 pages, 4 figure
3′-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli
3'-Untranslated region (3'UTR) engineering was investigated to improve solubility of heterologous proteins (e.g., Baeyer-Villiger monooxygenases (BVMOs)) in Escherichia coli. Insertion of gene fragments containing putative RNase E recognition sites into the 3'UTR of the BVMO genes led to the reduction of mRNA levels in E. coli. Importantly, the amounts of soluble BVMOs were remarkably enhanced resulting in a proportional increase of in vivo catalytic activities. Notably, this increase in biocatalytic activity correlated to the number of putative RNase E endonucleolytic cleavage sites in the 3'UTR. For instance, the biotransformation activity of the BVMO BmoF1 (from Pseudomonas fluorescens DSM50106) in E. coli was linear to the number of RNase E cleavage sites in the 3'UTR. In summary, 3'UTR engineering can be used to improve the soluble expression of heterologous enzymes, thereby fine-tuning the enzyme activity in microbial cells.1184Ysciescopu
The Spectrum of Strings on Warped AdS_3 x S^3
String theory on NS-NS AdS_3 x S^3 admits an exactly marginal deformation
which breaks the SL(2,R)_R x SL(2,R)_L isometry of AdS_3 down to SL(2,R)_R x
U(1)_L. The holographic dual is an exotic and only partially understood type of
two-dimensional CFT with a reduced unbroken global conformal symmetry group. In
this paper we study the deformed theory on the string worldsheet. It is found
to be related by a spectral flow which is nonlocal in spacetime to the
undeformed worldsheet theory. An exact formula for the spectrum of massive
strings is presented.Comment: 26 pages, no figure
Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.
BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK
- …
