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Abstract

Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from
colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the
most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we
developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4)
antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in
human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22.
We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was
caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway.
Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at
serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The
downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished
through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant
(K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study
supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to
standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway.
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Introduction

Colorectal cancer, which causes approximately 10% of
cancer deaths in the United States, is the third leading cause of
cancer-related mortality in the world; death usually results from
uncontrolled metastatic disease. Unfortunately, only 10-15% of
initial colorectal liver metastases are considered resectable
[1,2]. The unresectable cases of liver metastatic disease can
be treated with isolated hepatic perfusion (IHP), which involves
a method of complete vascular isolation of the liver to allow for
multimodality treatment of liver tumors [3–6].

Mapatumumab (Mapa) is a fully human IgG1 agonistic
monoclonal antibody which exclusively targets and activates
death receptor 4 (DR4) with high specificity and affinity [7–9].
Briefly, Mapa binds to the cell surface of DR4 and triggers the
extrinsic apoptotic pathway, mainly through the activation of the

pro-apoptotic initiator caspase-8. However, phase II trials
showed little or no clinical activity of single-agent Mapa in
patients with advanced refractory colorectal cancer or non-
small cell lung cancer [10,11]. Several possible molecular
mechanisms have been suggested including mutation/defects
in death receptors, the death-inducing signaling complex,
capsases, proapoptotic proteins or overexpression of anti-
apoptotic molecules [12–14]. Thus, there is a continuing and
significant need to develop applicable strategies to increase
Mapa’s efficacy.

Hyperthermia, a treatment often used with isolated hepatic
perfusion (IHP), maximizes tumor damage while preserving the
surrounding normal tissue [5,6,15]. Oxaliplatin, a commonly
used chemotherapeutic agent for colon cancer, is thought to
trigger cell death mainly by inducing platinum-DNA adduct
[3,16–18]. We previously developed a multimodality treatment
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using oxaliplatin pretreatment in combination with Mapa and
hyperthermia to treat human colon cancer [19]. However, IHP
delivering high doses of chemotherapy or biologic therapy
regionally requires a standard operative technique, continuous
intraoperative leak monitoring, and an external veno-veno
bypass circuit [20]. Thus oxaliplatin pretreatment is not
achievable in the procedure of the IHP in clinics, and all
components of the multimodality procedure need to be
performed simultaneously.

In this study, we investigated the therapeutic potential of the
clinically relevant multimodality treatment schedule oxaliplatin
and hyperthermia in combination with Mapa on human colon
cancer cell lines and colon cancer stem cells. We report here
that the multimodality treatment can sensitize human colon
cancer cells to Mapa-induced apoptosis by multiple molecular
mechanisms of action via both the intrinsic apoptotic pathway
and the extrinsic pathway.

Materials and Methods

Cell cultures
Human colorectal carcinoma CX-1 cells, which were

obtained from Dr. J.M. Jessup (National Institutes of Health)
[21], were cultured in RPMI-1640 medium (Gibco BRL)
containing 10% fetal bovine serum (HyClone). The human
colorectal carcinoma HCT116 cell lines kindly provided by Dr.
B. Vogelstein (Johns Hopkins University) were cultured in
McCoy’s 5A medium (Gibco-BRL) containing 10% fetal bovine
serum [22]. Human colon cancer stem cells, Tu-22, Tu-12 and
Tu-21 [23], were established by Dr. E. Lagasse (University of
Pittsburgh) and cultured in DMEM/F12 medium (Gibco BRL)
containing 0.5% fetal bovine serum (HyClone) and 1% insulin,
transferrin, and selenium (I.T.S, Fisher Scientific). All the cells
were kept in a 37°C humidified incubator with 5% CO2.

Reagents and antibodies
Oxaliplatin, MG132, cycloheximide (CHX) and protease

inhibitor cocktail were obtained from Sigma Chemical Co.
Mapatumumab (Mapa) was from Human Genome Sciences
(Rockville, MD, USA). JNK inhibitor (SP6001125) and G418
were from Calbiochem. Anti-Flag, anti-caspase 8, anti-caspase
9, anti-caspase 3, anti-ubiquitin, anti-PARP, anti-
phosphorylated JNK/JNK and anti-Bcl-xL antibody were from
Cell Signaling. Anti-p-Bcl-xL (S62) antibody was from
Chemicon/Millipore. Anti-FLIP antibody (NF6) was from Enzo
Life Sciences. Anti-actin antibody was from Santa Cruz.

Treatment
Cells were exposed to hyperthermia (42°C) in the presence/

absence of Mapa and oxaliplatin for 1 h, and then incubated at
37°C for 3 h or 23 h. For hyperthermia, cells were sealed with
parafilm and placed in a circulating water bath (Thomas
Scientific), which was maintained within 0.02°C of the desired
temperature.

Transient transfection and stable transfection
For transient transfection, cells were transfected with

Lipofectamine 2000 (Invitrogen), and were treated 48 h after
transfection. For stable transfection, cells stably
overexpressing HA-Bcl-xL wild-type (WT) or mutant types were
prepared by transfecting CX-1 cells with HA-Bcl-xL-WT, HA-
Bcl-xL-S62A (Ser62Ala), and HA-Bcl-xL-S62D (Ser62Asp) and
maintained in 500 μg/ml G418. CX-1-Bcl-xL S62A cells were
transfected with pLenti-Flag-FLIPL and stable clones were
selected with blasticidin (10 µg/ml). Pools of 3 clones were
used in the experiment.

MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,
MTS] assays

MTS studies were carried out using the Promega CellTiter 96
AQueous One Solution Cell Proliferation Assay (Promega).
CX-1 cells were grown in tissue culture- coated 96-well plates
and treated as described in Results. Cells were then treated
with the MTS/phenazine methosulfate solution for 1 h at 37°C.
Absorbance at 490 nm was determined using an enzyme-
linked immunosorbent assay plate reader.

Annexin V binding
Cells were heated in the absence or presence of Mapa and

harvested by trypsinization, washed with serum-free medium,
and suspended in binding buffer (Annexin V-FITC Staining Kit,
PharMingen). This cell suspension was stained with mouse
anti-human Annexin V antibody and PI and immediately
analyzed by flow cytometry.

Quantitative reverse transcription-polymerase chain
reaction (RT-PCR) analysis

Total RNA was extracted and purified from cultured cells
using the RNeasy Mini Kit (Qiagen, Valencia, CA), according to
the manufacturer’s instructions. The RNA was quantified by
determining absorbance at 260 nm. Two μg of total RNA from
each sample was reverse transcribed into cDNA using the
High-Capacity cDNA Reverse Transcription Kit (Life
Technologies, Inc.) in a volume of 20 μl. Quantitative PCR
(qPCR) was carried out using Applied Biosystems inventoried
TaqMan assays (20X Primer Probe mix) corresponding to
CASP8 and FADD-like apoptosis regulator (CFLAR; assay ID
Hs00153439_m1), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH; assay ID Hs02758991_g1). All
reactions were carried out with 2 X TaqMan Universal PCR
Master Mix (Applied Biosystems) on an Applied Biosystems
StepOne Plus Real-Time PCR System according to standard
protocols.

Immunoprecipitation
Briefly, cells were lysed in CHAPS lysis buffer with protease

inhibitor cocktail (Calbiochem). 0.5-1 mg of lysate was
incubated with 1.5 μg of anti-Flag/ubiquitin antibody or rabbit
IgG (Santa Cruz) at 4°C overnight, followed by the addition of
protein A-agarose beads (Santa Cruz) and rotation at room
temperature for 2 h followed by immunoblot analysis.
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PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e73654



Immunoblot analysis
Cells were lysed with Laemmli lysis buffer and boiled for 10

min. Protein content was measured with BCA Protein Assay
Reagent (Pierce, Rockford, IL, USA), separated by SDS-PAGE
and electrophoretically transferred to nitrocellulose membrane.
The nitrocellulose membrane was blocked with 5% nonfat dry
milk in PBS-Tween-20 (0.1% v/v) for 1 h and incubated with
primary antibody at room temperature for 2 h. Horseradish
peroxidase conjugated anti-rabbit or anti-mouse IgG was used
as the secondary antibody. Immunoreactive protein was
visualized by the chemiluminescence protocol (ECL,
Amersham, Arlington Heights, IL, USA). The densities of bands
were analyzed using Gel-pro application from Media
Cybernetics. Some of the Western blots in the same panels
were not produced from the same blots and were stripped and
reprobed with anti-actin antibody to normalize for differences in
protein loading to ensure equal protein loading.

[35S] Methionine incorporation analysis
Cells were treated with medium containing 4 µCi of [35S]-L-

methionine and exposed to hyperthermia (42°C) in the
presence/absence of oxaliplatin (10 µg/ml) for 1 h, and then
incubated at 37°C for 3 h. Cells were solubilized with 1 ml of
0.25 N NaOH and completely lysed by pipetting gently. [35S]
methionine incorporation was analyzed by Wallac 1409 Liquid
Scintillation Counter (PerkinElmer, MA, USA). [35S]-L-
methionine incorporation levels were calculated by normalizing
the [35S]-L-methionine counts per minute, corrected for
nonspecific background, to the total protein levels.

Site-directed mutagenesis
Lys 106 to Arg (K106R) and K195R mutations of the plasmid

pCR3.V64-Met-Flag-FLIPL, which was a gift from Dr. Jurg
Tschopp (University of Lausanne), were introduced into the c-
FLIPL gene using fully complementary mutagenic primers
(QuickChange site-directed mutagenesis kit from Agilent
Technologies). The following mutagenizing oligonucleotides
were used: sense 5'-
GAGATTGGTGAGGATTTGGATAGATCTG-
ATGTGTCCTCATTAAT-3' and antisense 5'-
ATTAATGAGGACACATCAGATCTAT-
CCAAATCCTCACCAATCTC-3' for K106R mutant, sense 5'-
CAAGCAGCAATCCA-
AAAGAGTCTCAGGGATCCTTCAAAT-3' and antisense 5'-
ATTTGAAGGATCCCTGAG-ACTCTTTTGGATTGCTGCTTG-3'
for K195R mutant. Mutants were confirmed by sequence
analysis.

Statistical analysis
Statistical analysis was carried out using Graphpad InStat 3

software (GraphPad Software). Data showing comparisons
between two groups were assessed using the Student’s t test.
Comparisons among more than two groups were done using
ANOVA with the appropriate post hoc testing. Statistical
significance is marked with asterisks (*, p<0.05 and **, p<0.01).

Results

The multimodality treatment of oxaliplatin/Mapa/hyperthermia
activates both intrinsic and extrinsic pathways in human colon
cancer cells

In this study, we attempted to develop clinically relevant
multimodality therapy for colorectal metastatic disease which
can be treated by IHP. The cell lines used include: human
colorectal metastatic carcinoma HCT116 and CX-1 cells, and
human colon cancer stem cells, Tu-12, Tu-21 and Tu-22, which
were established by Dr. E. Lagasse (University of Pittsburgh)
from the liver of metastatic colon cancer patients and cultured
within the passages 10-30 [23]. Cancer stem cells (CSC) are
able to self-renew, are tumorigenic, and are capable of
producing the heterogeneous lineages of cancer cells that
comprise the tumor. CSC should not only be affiliated with
tumor initiation and growth, but are likely to be responsible for
metastasis as well [24,25]. To investigate the effect of the
multimodality treatment of oxaliplatin/Mapa/hyperthermia-
induced cytotoxicity, cell viability was determined by MTS
assay. As shown in Figure 1A and 1B, synergistic effect was
observed in oxaliplatin/Mapa/hyperthermia compared with any
other single treatment or bi-treatment in both cell lines (P
<0.01). Figure 1C clearly shows that synergistic induction of
apoptotic death occurred during treatment with oxaliplatin/
Mapa/hyperthermia. Similar results were obtained in human
colon cancer stem cells Tu-12, Tu-21 and Tu-22 (Figure 1F).
These synergistic effects were due to an increase in the
activation of caspases (Figure 1D). Figure 1D shows that 100
ng/ml Mapa resulted in a small amount of caspase 8 and 3
activation, and thus PARP cleavage (the hallmark feature of
apoptosis). Interestingly, hyperthermia promoted the activation
of caspase 8, while oxaliplatin promoted caspase 9 activation.
Moreover, the synergistic effect of the multimodality treatment
was blocked by Z-IETD-FMK (caspase 8 inhibitor), Z-LEHD-
FMK (caspase 9 inhibitor), and Z-DEVD-FMK (caspase 3
inhibitor) in both cell lines (Figure 1E), indicating that both
pathways played an important role in the synergistic effect of
the multimodality treatment.

Dose responses of oxaliplatin and hyperthermia on
Mapa-induced apoptosis

We observed that as the doses of Mapa and oxaliplatin
increased, caspase 8/9/3 activation and PARP cleavage were
enhanced, indicating that the synergistic effect of the
multimodality treatment-induced apoptosis was dose
dependent (Figure 2A). Furthermore, our results suggest that
both the intrinsic and extrinsic apoptotic pathways were
involved in the synergistic effect of the multimodality treatment.
Similar data was obtained in HCT116 cells (Figure 2B).

Multimodality treatment-induced JNK activation, Bcl-xL
phosphorylation and reduction in c-FLIPL level

To further understand the mechanisms of how the intrinsic
and extrinsic pathways were involved in the multimodality
treatment-induced apoptosis, we examined Bcl-xL as well as c-
FLIP. Figure 2C shows that there was no change in the amount
of Bcl-xL protein, but the phosphorylation of Bcl-xL dramatically
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Figure 1.  Effect of oxaliplatin and hyperthermia on Mapa-induced cytotoxicity and apoptosis.  (A, B) CX-1 and HCT116 cells
were exposed to normothermic or hyperthermic (42°C) conditions for 1 h in the presence/absence of Mapa and oxaliplatin and then
incubated for 23 h at 37°C in the presence/absence of Mapa and oxaliplatin. Cell viability was analyzed by MTS assay. Error bars
represent SD from triplicate experiments. Asterisk ** represents a statistically significant difference (P <0.01). (C) CX-1 cells were
exposed to hyperthermia (42°C) for 1 h in the presence/absence of Mapa and oxaliplatin and then incubated for 3 h at 37°C in the
presence/absence of Mapa and oxaliplatin. After treatment, cells were stained with fluorescein isothiocyanate (FITC)-Annexin V and
propidium iodide (PI). Apoptosis was detected by the flow cytometric assay. (D) After treatment, the cleavage of caspase 8, caspase
9, caspase 3, or PARP was detected by immunoblotting. Actin was used to confirm the equal amount of proteins loaded in each
lane. (E) CX-1 and HCT116 cells were treated with or without 20 µM Z-IETD-FMK (caspase 8 inhibitor), Z-LEHD-FMK (caspase 9
inhibitor), and Z-DEVD-FMK (caspase 3 inhibitor) for µmin followed by oxaliplatin/Mapa/hyperthermia and the cleavage of PARP
was detected by immunoblotting. (F) Human colon cancer stem cells, Tu-12, Tu-21 and Tu-22, were exposed to normothermic or
hyperthermic (42°C) conditions for 1 h in the presence/absence of Mapa and oxaliplatin at the indicated concentration and then
incubated for 23 h at 37°C in the presence/absence of Mapa and oxaliplatin. PARP was detected by immunoblotting. Actin was
used as loading control.
doi: 10.1371/journal.pone.0073654.g001
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increased, accompanied by JNK phosphorylation. In addition,
the level of c-FLIPL significantly decreased during the
multimodality treatment in CX-1 cells. Figure 2D demonstrates
that JNK was activated and Bcl-xL was phosphorylated at
serine 62 in a dose-dependent manner in CX-1 cells.

Interestingly, the level of c-FLIPL dramatically decreased when
oxaliplatin was combined with hyperthermia. Similar data was
obtained in HCT116 cells (Figure 2E).

Figure 2.  Multimodality treatment-induced JNK phosphorylation, Bcl-xL phosphorylation and reduction in c-FLIPL

level.  (A) CX-1 and (B) HCT116 cells were exposed to hyperthermia (42°C) for 1 h in the presence/absence of Mapa and
oxaliplatin and incubated for 3 h at 37°C in the presence/absence of Mapa and oxaliplatin. After treatment, the cleavage of caspase
8, caspase 9, caspase 3, or PARP was detected by immunoblotting. Actin was used to confirm the equal amount of proteins loaded
in each lane. (C) CX-1 cells were exposed to hyperthermia (42°C) for 1 h in the presence/absence of 100 ng/ml Mapa and 10 µg/ml
oxaliplatin and then incubated for 3 h at 37°C in the presence/absence of Mapa and oxaliplatin. After treatment, cells were
immunoblotted with anti-phospho-JNK/JNK, anti-phospho-Bcl-xL/Bcl-xL and anti-FLIP antibodies. (D) CX-1 cells were exposed to
hyperthermia (42°C) for 1 h in the presence/absence of Mapa (100 ng/ml-1000 ng/ml) and oxaliplatin (10 µg/ml-100 µg/ml) and
incubated for 3 h at 37°C in the presence/absence of Mapa and oxaliplatin. After treatment, phospho-JNK/JNK, phospho-Bcl-xL/Bcl-
xL and FLIPL were detected by immunoblotting. Actin was used to confirm the equal amount of proteins loaded in each lane. (E)
HCT116 cells were exposed to hyperthermia (42°C) for 1 h in the presence/absence of Mapa (10 ng/ml-100 ng/ml) and oxaliplatin
(10 µg/ml-100 µg/ml) and then incubated for 3 h at 37°C in the presence/absence of Mapa and oxaliplatin. After treatment, phospho-
JNK/JNK, phospho-Bcl-xL/Bcl-xL and FLIPL were detected by immunoblotting. Actin was used to confirm the equal amount of
proteins loaded in each lane.
doi: 10.1371/journal.pone.0073654.g002
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The kinetics of multimodality treatment in CX-1 and
HCT116 cells

We observed that the effect of the multimodality treatment
increased as time progressed in CX-1 (Figure 3A) and HCT116
cells (Figure 3B). JNK activation reached maximum at 4 h after
the initial treatment and gradually decreased during the
multimodality treatment. Data from immunoblot and imaging gel
analyses show that Bcl-xL phosphorylation reached the peak
around 12 h after the treatment indicating that JNK activation
was an early event and might regulate the Bcl-xL
phosphorylation. In CX-1 cells the level of c-FLIPL dramatically
decreased at 4 h after the treatment of oxaliplatin combined
with hyperthermia, while in HT116 cells, it reached minimum 24
h after the treatment.

The requirement of JNK activation and Bcl-xL
phosphorylation in the multimodality treatment-
induced apoptosis

JNK inhibitor SP6001125 partially reduced oxaliplatin/Mapa/
hyperthermia-induced PARP cleavage in CX-1 cells, indicating
that the JNK pathway was crucial for multimodality treatment-
induced apoptosis (Figure 4A). Noticeably, SP6001125 highly
reduced the level of Bcl-xL phosphorylation in CX-1 cells,
which provides strong evidence that multimodality treatment-
induced Bcl-xL phosphorylation requires JNK activation. Zhao
et al. reported that JNK activation mediates c-FLIP
downregulation [26]. This possibility was examined in Figure
4A. We observed that no restoration of c-FLIPL occurred
during treatment with SP6001125. This observation was
consistent with other researchers’ reports [27,28].

To evaluate the effect of Bcl-xL phosphorylation at Ser62 on
its anti-apoptotic activity, we established CX-1-derived cell lines

stably overexpressing wild-type Bcl-xL (Bcl-xL-WT), Ser62Ala
phospho-defective Bcl-xL mutant (Bcl-xL-S62A), Ser62Asp
phospho-mimic Bcl-xL mutant (Bcl-xL-S62D), or the
corresponding empty vector (pcDNA). As expected,
overexpression of Bcl-xL-WT prevented oxaliplatin/Mapa/
hyperthermia-induced PARP cleavage. Interestingly,
overexpression of Bcl-xL-S62D enhanced PARP cleavage,
whereas that of Bcl-xL-S62A inhibited PARP cleavage (Figure
4B). These data suggest that the level of Bcl-xL and its
phosphorylation at S62 play an important role in the
multimodality-induced apoptosis.

Reduction in c-FLIPL level following hyperthermia and
oxaliplatin in CX-1 cells

c-FLIP is the major inhibitor of the extrinsic apoptotic
pathway through inhibition of caspase-8 activation, and we
observed that the level of c-FLIPL was reduced after
hyperthermia at 42°C for 1 h in CX-1 cells as shown in Figure
5A. However, c-FLIPL was restored to the normal level after 3 h
incubation at 37°C which was consistent with our previous
paper [24]. Oxaliplatin (10 µg/ml, 4h) alone didn’t reduce the
level of c-FLIPL. Interestingly, the level of c-FLIPL was
maintained at a reduced level when hyperthermia combined
with oxaliplatin.

Quantitative RT-PCR showed that no significant inhibition of
c-FLIP expression at the mRNA level was evident after
hyperthermia, oxaliplatin, or the combination (Figure 5B). We
observed in Figure 5C that 25% of protein synthesis was
inhibited in hyperthermia, whereas there was 46% protein
synthesis inhibition in oxaliplatin combined with hyperthermia.
Figure 5D shows that reduction of c-FLIPL level by 42°C for 1 h
heating alone was more than that by 30 µg of cyclohexmide

Figure 3.  The kinetics of multimodality treatment in CX-1 and HCT116 cells.  CX-1 (A) and HCT116 (B) cells were exposed to
hyperthermic (42°C) conditions for 1 h in the presence/absence of Mapa and oxaliplatin and incubated at 37°C in the presence/
absence of Mapa and oxaliplatin for 3 h, 7 h, 11 h and 23 h. After treatment, the cleavage of caspase 8/9/3 and PARP, phospho-
JNK/JNK, phospho-Bcl-xL/Bcl-xL and FLIPL were detected by immunoblotting. Actin was used to confirm the equal amount of
proteins.
doi: 10.1371/journal.pone.0073654.g003
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which inhibits protein synthesis by 99% [28]. These results
suggest that protein synthesis inhibition alone is not a major
factor for downregulation of FLIPL by hyperthermia.
Remarkably, c-FLIPL was recovered during 3 h of
normothermic condition, indicating that c-FLIPL was
resynthesized. However, the recovery was delayed by
treatment with hyperthermia and oxaliplatin, as protein
synthesis was significantly inhibited.

Figure 5E shows that the ubiquitination of endogenous c-
FLIPL increased upon hyperthermia treatments. Moreover,
proteasome inhibitor MG132 blocked the degradation of c-
FLIPL, confirming the existence of proteasomal-mediated
degradation of the protein after hyperthermia.

The online software UbPred, which predicts protein
ubiquitination sites, showed that lysine 106 and 195 had the
highest scores. We replaced 106 and 195 lysine with arginine
and tested the stability of the full-length c-FLIPL carrying the
resulting point mutation. As shown in Figure 5F, in the
transfection group, c-FLIPL K106R was easily degraded when
subjected to hyperthermia while K195R was refractory to

Figure 4.  The requirement of phosphorylation of JNK and
Bcl-xL in the multimodality treatment-induced apoptosis in
CX-1 cells.  (A) Cells were pretreated with JNK inhibitor 25 µM
SP6001125 followed by oxaliplatin/Mapa/hyperthermia and
immunoblotted with anti-PARP, anti-phospho-Bcl-xL and anti-
Bcl-xL antibody. (B) Transfectants with control plasmid
(pcDNA), wild-type Bcl-xL (Bcl-xL-WT), Ser62/Ala phospho-
defective Bcl-xL mutant (Bcl-xL-S62A), or Ser62/Asp phospho-
mimic Bcl-xL mutant (Bcl-xL-S62D) were treated with
oxaliplatin/Mapa/hyperthermia and immunoblotted with anti-
PARP or anti-Bcl-xL antibody. Actin was used to confirm the
equal amount of proteins loaded in each lane.
doi: 10.1371/journal.pone.0073654.g004

degradation by hyperthermia. Figure 5G confirms that c-FLIPL

wild-type (WT) was efficiently ubiquitinated but not the K195R
mutant, which was found virtually without ubiquitination. We
observed that c-FLIPL K195R expressing cells were the most
resistant to the multimodality treatment-induced apoptotic cell
death (Figure 5H and 5I). These results suggest that the
transient hyperthermia-mediated degradation of c-FLIPL

involved ubiquitination of K195, and K195R mutant conferred
resistance against the multimodality treatment-induced
apoptotic death.

Abrogation of the synergistic effect by overexpression
of c-FLIPL K195R and Bcl-xL-S62A in CX-1 and HCT116
cells

Finally, we compared the effect of the multimodality
treatment in CX-1 and HCT116 cells overexpressed with c-
FLIPL WT, Bcl-xL-S62A, Bcl-xL-S62A + c-FLIPL WT (Figure 6A
and 6B) and c-FLIPL K195R, Bcl-xL-S62A, Bcl-xL-S62A +c-
FLIPL K195R (Figure 6C and 6D). We observed that c-FLIPL

WT/K195R or Bcl-xL-S62A partially blocked the effect of the
multimodality treatment. Of note, the multimodality treatment-
induced apoptosis was almost completely blocked by
overexpression of both c-FLIP LWT/K195R and Bcl-xL-S62A
(Figure 6A and 6C), indicating c-FLIPL and Bcl-xL were
independent factors contributing to the synergistic effect of the
multimodality treatment. Similar results were obtained in cell
viability assay (Figure 6B and 6D). Our results suggest that (a)
reduction in c-FLIPL level and (b) Bcl-xL phosphorylation at
Ser62 are both responsible for the synergistic induction of
apoptosis of the clinically relevant multimodality treatment.

Discussion

Our laboratory has focused on identifying strategies and
mechanisms for thermal sensitization in an attempt to improve
the clinical efficacy of IHP [19,29–31]. We previously
developed the multimodality treatment (oxaliplatin pretreatment
+ Mapa + hyperthermia) for colorectal cancer hepatic
metastases. In this study, we investigated the efficacy and the
underlying mechanisms of the more clinically relevant
simultaneous treatment schedule of oxaliplatin + Mapa +
hyperthermia-induced apoptosis and proposed that (a)
reduction in c-FLIPL level and (b) Bcl-xL phosphorylation at
Ser62 are both responsible for the synergistic induction of
apoptosis of the clinically relevant multimodality treatment.

First, we compared the efficacy of the pretreatment of
oxaliplatin followed by Mapa and hyperthermia to that of
simultaneous treatment of oxaliplatin, Mapa and hyperthermia
(Figure S1). We observed that oxaliplatin pretreatment resulted
in maximum apoptotic cell death which was consistent with our
previous paper [19]. Notably, synergistic effect was still
observed in the more clinically relevant multimodality treatment
schedule (cotreatment with oxaliplatin). Assays of caspase
inhibitors confirmed that both pathways played an important
role in the synergistic effect of the multimodality treatment. It is
known that combinatorial drug effects are complex, even for
relatively specific drugs [32]. The goal of this study is to reveal
the key molecules in mediating the synergistic induction of
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apoptosis and how these molecules rewired the apoptotic
signaling networks.

Bcl-xL is a pro-survival member of the Bcl-2 family that plays
indispensable roles in the intrinsic pathway. It is overexpressed
in many malignant tumors including colorectal cancer. The
status of Bcl-xL protein expression might be an independent

prognostic marker for colorectal cancer patients [33]. Bcl-xL
undergoes phosphorylation in response to microtubule
inhibitors and other apoptotic stimuli [17,34]. Our study
revealed that the oxaliplatin + Mapa + hyperthermia clinically
relevant schedule synergistically induced Bcl-xL
phosphorylation. We also observed that Bcl-xL phosphorylation

Figure 5.  Reduction in c-FLIPL level following hyperthermia and oxaliplatin in CX-1 cells.  (A) Cells were exposed to 37°C or
42°C for 1 h in the presence/absence of 10 µg/ml oxaliplatin and then harvested immediately or 3 h after incubation at 37°C. c-FLIPL

was examined by Western blot analysis. (B) Cells were exposed to 37°C or 42°C for 1 h in the presence/absence of 10 µg/ml
oxaliplatin and then incubated for 3 h at 37°C. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was
performed to measure relative c-FLIP mRNA level. The bar graph represents mean values (+SD) from triplicate experiments. (C)
Cells were exposed to 37°C or 42°C for 1 h in the presence/absence of 10 µg/ml oxaliplatin and then incubated for 3 h at 37°C.
Protein synthesis was measured by [35S] Methionine incorporation. (D) Cells were treated with 30 µg/ml CHX, or exposed to
hyperthermia in the presence or absence of CHX. The levels of c-FLIPL and loading control actin were measured by Western blot
analysis. (E) Cells were exposed to hyperthermia for 30 or 60 min in the presence/absence of MG132. Lysate samples were
immunoprecipitated with anti-ubiquitin antibody and protein G-Sepharose. The ubiquitinated FLIP was detected by Western blot with
anti-FLIP antibody. (F) Cells were transiently transfected with 4 µg plasmid containing mock, K106R (106 lysine residue was
replaced with arginine), K195R, or wild-type (WT) c-FLIPL. After 48 h incubation, cells were exposed to hyperthermia at 42°C for 1 h.
The level of c-FLIPL was detected by anti-FLIP antibody. Actin was used as an internal control. (G) Cells were transiently
transfected with Flag-tagged c-FLIPL WT or K195R plasmid; 48 h later, cells were subjected to hyperthermia at 42°C for 1 h. The
levels of ubiquitinated c-FLIPL were detected by IP with anti-Flag antibody followed by Western blot using anti-ubiquitin antibody.
The presence of transfected c-FLIPL in the lysates was verified by Western blot. Actin was shown as an internal standard. (H) Cells
were transiently transfected with c-FLIPL WT, K106R, or K195R plasmid; 48 h later, cells were heated at 42°C for 1 h in the
presence/absence of Mapa (100 ng/ml) and oxaliplatin (10 µg/ml) and then incubated at 37°C for 3 h. Lysates containing equal
amounts of protein were immunoblotted with anti-PARP and anti-FLIP antibody. Actin was shown as an internal standard. (I) Cells
were transiently transfected with c-FLIPL WT, K106R, or K195R plasmid; 48 h later, cells were heated at 42°C for 1 h in the absence
or presence of Mapa (100 ng/ml) and oxaliplatin (10 µg/ml), and then incubated for 24 h at 37°C. Cell viability was analyzed by MTS
assay. Error bars represent SD from triplicate experiments. Asterisk * represents a statistically significant difference (P <0.05).
doi: 10.1371/journal.pone.0073654.g005
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required activated JNK, which can recognize a proline residue
on the carboxyl side of the phospho-acceptor [35]. Our data
highlighted the role of phosphorylation at Ser62, which
antagonized the anti-apoptotic function, probably due to a
changed interaction between Bax/phospho-mimic Bcl-xL-S62D
and Bax/Bcl-xL-S62A. However, our data also implied Bcl-xL
phosphorylation is crucial but not sufficient to the contribution
of the synergistic effect of the multimodality treatment,
indicating that other mechanisms should be identified.

c-FLIP is the major inhibitor of the extrinsic apoptotic
pathway through inhibition of caspase-8 activation and
processing at the death-inducing signaling complex (DISC)
[36–40]. Differential splicing gives rise to long (c-FLIPL) and
short (c-FLIPS) forms of c-FLIP. Both c-FLIP splice variants
bind to FADD within the DISC. They compete with caspase 8
for DISC association and can form heteromeric complexes,
thereby inhibiting apoptosis [37,41]. c-FLIPL, which is the most

abundant isoform in many cancer cell lines, is a key regulator
of colorectal cancer cell death and associated with a poor
prognosis in colorectal cancer patients [39,42,43]. Given the
central role of c-FLIPL in extrinsic apoptotic death in colon
cancer cells, we investigated in depth the mechanism of FLIPL

down-regulation in the multimodality treatment.
It is reported that c-FLIP is regulated at the transcriptional,

translational level or through protein degradation [44–47]. We
observed that the level of c-FLIPL was reduced after
hyperthermia. Quantitative RT-PCR showed that the decrease
of c-FLIP level was not due to transcriptional regulation. FLIPL

was dramatically reduced in the presence of the protein
synthesis inhibitor cycloheximide, indicating that c-FLIPL was
degraded during hyperthermia. Ubiquitination assay showed
that endogenous c-FLIPL underwent proteasomal-mediated
degradation after hyperthermia. However, c-FLIPL was a fast-
turnover protein and resynthesized after incubation at 37°C.

Figure 6.  Protection from multimodality treatment-induced apoptosis by overexpression of c-FLIPL WT/K195R and Bcl-xL-
S62A in CX-1 or HCT116 cells.  (A) CX-1 cells stably overexpressed with pcDNA, c-FLIPL WT, Bcl-xL-S62A and c-FLIPL WT + Bcl-
xL-S62A, and three stable clones were pooled, and cells were heated at 42°C for 1 h in the presence/absence of Mapa (10 ng/ml)
and oxaliplatin (10 µg/ml) and then incubated at 37°C for 3 h. The cleavage of PARP, and the level of c-FLIPL and Bcl-xL were
detected by Western blot analysis. (B) Cell viability was analyzed by MTS assay 24 h after treatment. Error bars represent SD from
triplicate experiments. Asterisk ** represents a statistically significant difference (P <0.01). (C) HCT116 cells were transiently
transfected with equal amount of plasmid containing mock, c-FLIPL K195R, Bcl-xL-S62A and c-FLIPL K195R + Bcl-xL-S62A. After
48 h incubation, cells were heated at 42°C for 1 h in the presence/absence of Mapa (10 ng/ml) and oxaliplatin (10 µg/ml) and then
incubated at 37°C for 3 h. The cleavage of PARP, and the level of c-FLIPL and Bcl-xL were detected by Western blot analysis. (D)
Cell viability was analyzed by MTS assay 24 h after treatment. Error bars represent SD from triplicate experiments. Asterisk *
represents a statistically significant difference (P <0.05).
doi: 10.1371/journal.pone.0073654.g006
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Interestingly, the level of c-FLIPL remained decreased when
hyperthermia was combined with oxaliplatin. Protein synthesis
assay showed 46% protein synthesis inhibition in oxaliplatin
combined with hyperthermia; thus the decrease of c-FLIPL was
due to the degradation through c-FLIPL ubiquitination by
hyperthermia and delay of c-FLIPL restoration through protein
synthesis inhibition by oxaliplatin combined with hyperthermia.
We also found that c-FLIPL K195R was refractory to
degradation by hyperthermia and prevented the multimodality
treatment-induced apoptotic cell death.

Our results showed that c-FLIPL WT/K195R and Bcl-xL-S62A
were independent factors that blocked the synergistic effect of
the clinically relevant multimodality treatment, indicating that
two modes of synergistic induction of apoptosis were involved
in the multimodality treatment. The levels of Bcl-xL/c-FLIPL may
serve as biomarkers for multimodality treatment and prognosis.
A high value of Bcl-xL/c-FLIPL signature in the tumor may
predict less response to the chemotherapy and thus the
multimodality treatment would be suggested in this situation.
Indeed several researchers reported that the prognosis was
reversely correlated to the value of Bcl-xL/c-FLIPL

[33,43,48,49].
Taken together, we document here that the clinically relevant

multimodality treatment oxaliplatin, Mapa and hyperthermia
increased apoptosis signaling via both the intrinsic and
extrinsic apoptotic pathways. Given the facts that hyperthermia
has a favorable safety profile, oxaliplatin is a commonly used
chemotherapeutic drug for colon cancers, and Mapa currently
is undergoing clinical testing, this multimodality treatment has

an excellent translational potential and should be considered
for colorectal hepatic metastases treatment in clinics.

Supporting Information

Figure S1.  Effect of pretreatment of oxaliplatin on
multimodality-induced apoptosis. CX-1 cells were pretreated
with oxaliplatin for various times (0 h-20 h) and exposed to
normothermic or hyperthermic (42°C) conditions for 1 h in the
presence/absence of Mapa and oxaliplatin and then incubated
for 3 h at 37°C. After treatment, the cleavage of PARP was
detected by immunoblotting. Actin was used as loading control.
(TIF)
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