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1 Introduction

The MHV vertex expansion, due to Cachazo et al (CSW) [1], is a diagrammatic method for

calculating gauge theory scattering amplitudes. This method, inspired by Witten’s twistor

string [2] formulation of N = 4 super-Yang–Mills (SYM), often produces very simple

expressions. While it is expected to be generally valid, to date it has been successfully

used at tree and one-loop level [3]. This expansion can in fact be formally derived from

the light-cone gauge fixed Yang-Mills action [4–6] and it can be shown to be equivalent to

the Feynman diagram expansion of the twistor space Yang-Mills action [7].

In closely related developments, by studying the analytic properties of amplitudes

as functions of complex external momenta, Britto et al (BCFW) found recursion relations

which generate all tree-level amplitudes [8, 9]. The supersymmetric generalizations of these
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relations were solved explicitly [10] giving relatively compact expressions for all tree-level

superamplitudes. By related analytic methods in which all external lines are taken to be

complex, the MHV vertex expansion, [11, 12] was directly reproduced, thus showing that

the BCFW recursion relations and the MHV vertex expansion are equivalent at tree level.

The N = 4 SYM tree-level amplitudes constructed in [10] possess remarkable, hidden,

conformal symmetries [10, 13]. Hints of these dual conformal symmetries were first seen

in [14], and extended to dual superconformal symmetry in [15]. For tree-level scattering

amplitudes there is in fact an enhancement of superconformal symmetry to an infinite-

dimensional algebra called the Yangian [16].

The variables which make the dual conformal symmetry most apparent are the “mo-

mentum twistors” introduced by Hodges [17]. These momentum twistors, which are alge-

braically related to the null momenta of the amplitude and solve the overall momentum

constraint, are the spinors of the dual conformal group. Perhaps the most elegant for-

mulation of the Yangian invariants of N = 4 SYM is the Grassmannian. The original

Grassmannian in standard twistor space was introduced in [18] where it was shown that a

contour integral over the Grassmannian G(k, n) produced the Nk−2MHV superamplitudes.

An equivalent form in momentum twistor space was soon found [19] which made the dual

superconformal symmetry manifest. That the Grassmannian has the full Yangian symme-

try was directly shown in [20]. For appropriate choices of the contour, the Grassmannian

generates more than tree-level amplitudes, indeed it was argued [21, 22] that it generates

all Yangian invariants.

Beyond tree-level, IR divergences in amplitudes can no longer be avoided and care must

be taken in either regulating these divergences or in choosing to study objects which are

well defined in spite of the bad IR behavior. A set of such objects are the integrands of the

loop integrals. While in general such objects are ambiguous, as explained by Arkani-Hamed

et al [23] (ABCCT), they can be canonically defined in the planar limit. ABCCT further

introduced a recursive method (see also [24] for related work), analogous to the BCFW

recursion relations, for calculating the all-loop integrand starting from tree amplitudes.

These recursion relations, in addition to providing an efficient method for calculating the

integrands, make their Yangian invariance manifest.

As was shown by Bullimore et al (BMS) [25], the MHV vertex expansion can also

be usefully recast in momentum twistor space, making the dual superconformal symmetry

manifest. In this formulation the “propagators” are dual superconformal invariants while

the vertices are simply unity. Using this formalism BMS gave an algorithm for calculating

any tree-level amplitude and any loop integrand. As mentioned by BMS the expressions

for the tree amplitudes are very similar to those found by solving the BCFW recursion

relations and one might expect this to continue to be true for the loop integrand. In this

work we confirm that expectation.

We start in section 3, after a brief review of the momentum space recursion relations

and MHV vertex expansion in section 2, by showing that the tree amplitudes following from

the momentum twistor MHV expansion satisfy the BCFW recursion relations. While this

is in essence already known, we find that it is a very useful warm-up for the loop integrand

calculation as many details are similar. In particular, while the MHV expansion naturally
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produces sums over rooted tree diagrams, we find it useful to recast it as sums over non-

crossing partitions (which are well known to be equivalent e.g. [26]). Turning to the loop

integrands in section 4 we explicitly study two examples — one-loop MHV and one-loop

NMHV - and show that the MHV expansions satisfy the ABCCT recursion relations. We

then introduce a rewriting of the sum over diagrams for the MHV expansion for all legs

and all loops as a sum over a generalized class of non-crossing partitions, and show that

it satisfies the ABCCT recursion relations. The use of non-crossing partitions enables us

to write down the all-loop integrands in an explicit and concise way, and it makes the full

classification of (graphs dual to) planar MHV diagrams clearer. As a side result we find a

recursive relation for the number of elements in a certain class of non-crossing partitions,

or equivalently, graphs dual to MHV diagrams. In appendix A, we further explain the

one-to-one correspondence between non-crossing partitions and planar MHV diagrams. By

rewriting the expansion in terms of dual graphs, the connections to the recently proposed

dual supersymmetric Wilson loops [27, 28] become more transparent.

This result can be viewed in several ways. Firstly, while the MHV vertex expansion is

believed to be correct to all orders this has never been proved beyond one-loop, this work

can be seen as providing evidence for the validity of the MHV expansion in showing that it

is equivalent to the recursion relations following from analytic properties of the amplitudes.

Secondly, it provides an explicit solution to the recursion relations of ABCCT analogous

to that found at tree-level [10]. An important feature of the solution is that it is manifestly

cyclic, thus it naturally unifies different forms of all-loop integrands from ABCCT relations

with different shifts, and implies highly non-trivial relations between them.

2 A brief review of recursion relations and MHV vertex expansion in

momentum-twistor space

In this section, we shall give a brief review of the recursion relations and MHV vertex

expansion in momentum-twistor space, for all-loop integrands of scattering amplitudes in

planar N = 4 SYM. More details can be found in [23, 25].

2.1 Momentum twistors for planar N = 4 SYM

The n-particle superamplitude in planar N = 4 SYM, A(λ1, λ̃1, η̃1; . . . ;λn, λ̃n, η̃n), depends

on n supermomenta, or equivalently, n pairs of spinors (λα
i , λ̃α̇

i ), (α = 1, 2 α̇ = 1̇, 2̇) and n

fermionic variables η̃I
i (I = 1, . . . , 4) with i = 1, . . . , n.

Due to the color-ordering, one can define n region supermomenta (xαα̇
i , θαI

i ) by,

xi − xi+1 = λiλ̃i,

θi − θi+1 = λiη̃i, (2.1)

where (xn+1, θn+1) = (x1, θ1), thus the supermomentum conservation
∑

i λiλ̃i = 0,
∑

i λiη̃i =

0, is automatically satisfied.
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To make the dual superconformal symmetry of N = 4 SYM manifest, one introduces

n momentum supertwistors,

ZA
i =




λα
i

µα̇
i

ηI
i


 =




λα
i

xαα̇
i λiα

θαI
i λiα


 , (2.2)

which are defined projectively, for i = 1, . . . , n. The bosonic part of the momentum su-

pertwistor is denoted as Zi = (λi, µi), and henceforth we shall refer to Zi simply as a

momentum twistor.

The inverse map is given by,

xi =
µiλi−1 − µi−1λi

〈i − 1, i〉
,

θi =
ηiλi−1 − ηi−1λi

〈i − 1, i〉
, (2.3)

where the 2-bracket is defined as 〈a, b〉 = ǫαβλα
aλβ

b . Another set of useful relations express

supermomenta in terms of momentum twistors,

λ̃i =
µi−1〈i, i + 1〉 + µi〈i + 1, i − 1〉 + µi+1〈i − 1, i〉

〈i − 1, i〉〈i, i + 1〉
,

η̃i =
ηi−1〈i, i + 1〉 + ηi〈i + 1, i − 1〉 + ηi+1〈i − 1, i〉

〈i − 1, i〉〈i, i + 1〉
. (2.4)

The superamplitude A(1, . . . , n) can be written in momentum-twistor space by pulling

out the MHV tree amplitude A
(0)
MHV(1, . . . , n),

A(1, . . . , n) = A
(0)
MHVA(1, . . . , n). (2.5)

Henceforth we shall work with A(1, . . . , n), which is dual superconformal invariant. The

geometric picture of amplitudes in momentum-twistor space is simple. The point xi is asso-

ciated with the line (i i+1) in momentum-twistor space, which is defined as the line passing

through two (bosonic) points in the momentum-twistor space Zi and Zi+1. Since the lines

(i − 1 i) and (i i + 1) intersect at Zi, it is guaranteed that xi and xi−1 are null separated,

or equivalently, the mass-shell conditions p2
i = (xi −xi+1)

2 = 0 are automatically satisfied.

To see this explicitly, one can define the bosonic dual conformal invariants through the

4-bracket,1 〈a, b, c, d〉 = 〈a b|c d〉 = ǫABCDZA
a ZB

b ZC
c ZD

d , which vanishes if and only if the

four points are coplanar, or equivalently, two lines, say, (a b) and (c d), intersect. For the

case (a, b, c, d) = (i − 1, i, j − 1, j), the 4-bracket is related to the Lorentz invariant,

(xi − xj)
2 =

〈i − 1, i, j − 1, j〉

〈i − 1, i〉〈j − 1, j〉
, (2.6)

and we have seen that (xi −xj)
2 = 0 if and only if the lines (i− 1 i) and (j − 1 j) intersect.

1The invariant is totally anti-symmetric for the four twistors and so it can be defined in terms of two

lines, such as (a b) and (c d).
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Furthermore, one can define the basic dual superconformal invariant using five mo-

mentum supertwistors,

[a, b, c, d, e] =
δ0|4(ηa〈b, c, d, e〉 + cyclic)

〈a, b, c, d〉〈b, c, d, e〉〈c, d, e, a〉〈d, e, a, b〉〈e, a, b, c〉
. (2.7)

As was shown in [19], for the special case (a, b, c, d, e) = (n, i − 1, i, j − 1, j), it is given by

the invariant Rn;i,j, which appears in the NMHV amplitude [10],

A
(0)
NMHV =

∑

1<i≺j<n

Rn;i,j, (2.8)

where i ≺ j means i < j − 1. However, [a, b, c, d, e] is defined for five general momentum

twistors, and we have seen that it has a simple pole when four of the five twistors become

coplanar. Also it is obvious that the invariant is anti-symmetric for the five twistors, and it

vanishes whenever two of them are identified projectively. As we will see below, the invari-

ant [a, b, c, d, e] is the basic building block of planar amplitudes in momentum-twistor space.

2.2 BCFW recursion relations and loop generalizations in momentum-twistor

space

The BCFW recursion relations for tree-level superamplitudes in N = 4 SYM have been

reformulated in the momentum-twistor space [23]. Here we merely briefly recall the con-

struction and resulting formula referring the reader to [23] for details. The BCFW defor-

mation has a simple form in momentum-twistor space, for which one needs to choose a

special leg, say, Z1, to shift,2

Z1 → Z1̂ = Z1 + zZ2 . (2.9)

Then the color-ordered tree amplitude M(1, . . . , n) = A(0)(1, . . . , n) has poles zj where

〈n, 1̂, j − 1, j〉 = 0, for j = 4, . . . , n− 1. The residue at the pole zj is given by the “inhomo-

geneous” term of the usual BCFW relation,
∫

d0|4ηIj
M(1̂j , . . . , j − 1, Ij)

1
P 2

Ij

M(Ij , j, . . . , n)

where 1̂j and the internal leg Ij are evaluated at the pole. This expression simplifies signifi-

cantly in momentum-twistor space, see [23], with essentially the propagator being replaced

by a Yangian invariat. In addition, there is a pole at infinity, Z1̂ → Z2 projectively when

z → ∞, and its residue is non-vanishing.3 This corresponds to the “homogeneous” term

with a 3-point anti-MHV amplitude attached to Mn−1, and in momentum-twistor space,

it is simply given by Mn−1(2, . . . , n). Again, details of the computation of residues in

momentum-twistor space can be found in [23]. We combine the contributions from these

various poles and adding the residues, the recursion relations for tree-level n-point NkMHV

amplitudes Mn,k(1, . . . , n) = A
(0)

NkMHV
(1, . . . , n) can be written as,

Mn,k(1, . . . , n) = Mn−1,k(2, . . . , n) (2.10)

+
∑

j,k′

[j − 1, j, n, 1, 2] Mj,k′(1̂j , . . . , j − 1, Ij)Mn+2−j,k−1−k′(Ij , j, . . . , n) .

2Our choice of deformation differs from that in [23].
3As pointed out in [23] there are also possible poles at 〈Z1(z)IZ2〉, with I the infinity tensor. However

these poles would likely violate dual conformal symmetry and so we do not expect them to contribute. In

a theory without dual conformal symmetry it is possible they would need to be included.
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The summation ranges are j = 4, . . . , n − 1, k′ = 0, . . . , k − 1, and terms with k′ > j − 4

or k − 1 − k′ > n − j − 2 vanish due to helicity constraints e.g. one can’t have an n-point

NkMHV with k > n − 4. The deformations are given by

Z1̂j
= 〈2, j − 1, j, n〉Z1 + 〈j − 1, j, n, 1〉Z2 = (1 2) ∩ (j − 1 j n),

ZIj
= 〈j, n, 1, 2〉Zj−1 + 〈n, 1, 2, j − 1〉Zj = (j − 1 j) ∩ (n 1 2). (2.11)

Note that in the second set of equalities we have adopted the geometric interpretation of

the deformations [23], where (i j) ∩ (k l m) denotes the intersect of line (i j) with plane

(k l m).

We now wish to turn our considerations to loop amplitudes in N = 4 SYM which

of course suffer from IR divergences. Nonetheless, the integrands, which are not only

IR-finite but simply rational functions, can be unambiguously defined in the planar sec-

tor and thus provide a well defined set of invariants which can be calculated. In order

to do just that, a generalized set of BCFW-like recursion relations have been proposed

for integrands for all-loop amplitudes in planar N = 4 SYM [23]. To specify the inte-

grands of l-loop amplitudes, in addition to n external momentum twistors, one also needs

l pairs of momentum twistors (Am, Bm), for m = 1, . . . , l, associated with l loop momenta,

upon which integrations are performed. For the n-point l-loop NkMHV superamplitude,

An,k,l(1, . . . , n) = A
(l)

NkMHV
(1, . . . , n), the integrand Mn,k,l(1, . . . , n) can be defined by the

generalized recursion relations [23]. The formula for the l-loop integrand Mn,k,l is similar

to the tree-level one, plus a “source term” which comes from the poles 〈n, 1̂, A,B〉 = 0 for

(A,B) = (A1, B1), . . . , (Al, Bl),

Mn,k,l(1, . . . , n; {A,B}l) = Mn−1,k,l(2, . . . , n; {A,B}l)+
1

l!

∑

σl

∑

j,k′

[n, 1, 2, j−1, j] ML MR

+
1

l

l∑

l0=1

∫

ηl0

∫

GL(2)l0

[n, 1, 2, Al0 , Bl0 ]M
S , (2.12)

with

ML = Mj,k′,l′(1̂j , . . . , j − 1, Ij ; {A,B}L) ,

MR = Mn+2−j,k−1−k′,l−l′(Ij , j, . . . , n; {A,B}R) ,

MS = M ′
n+2,k+1,l−1(1̂Al0

Bl0
, . . . , n,Al0 , B̂l0 ; {A,B}{l}/l0) , (2.13)

where in the second term on the r.h.s. of eq. (2.12) we sum over all ways of distributing

{A,B}l into {A,B}L with l′ pairs of loop twistors and {A,B}R with l − l′ pairs for l′ =

0, . . . , l, and introduce an 1/l! factor to compensate the overcounting; in the third term we

sum over l0 and introduce an 1/l factor. The various deformations are given by

1̂j = (1 2) ∩ (n j − 1 j), Ij = (j − 1 j) ∩ (n 1 2),

1̂AB = (1 2) ∩ (n AB), B̂ = (AB) ∩ (n 1 2), (2.14)

with (A,B) = (Al0 , Bl0) for l0 = 1, . . . , l.

– 6 –



J
H
E
P
0
2
(
2
0
1
1
)
1
1
6

The source term, as given by the last line of eq. (2.12) is defined as the forward limit

of integrands at l − 1 loop order. Given the prefactor and Mn+2,k+1,l−1, the fermionic

integration
∫
η =

∫
d0|4ηAd0|4ηB removes two of the total k + 2 fermionic delta functions

to produce a result in the NkMHV sector. The “GL(2)” integration
∫
GL(2) is a contour

integral over general GL(2) transformations g, which bring an arbitrary 2-vector (A =

ZA, B = ZB) to general 2-vectors (A′ = g11A + g12B,B′ = g21A + g22B), and the residue

is given at the pole A′ ∝ B′ ∝ B̂, or geometrically when both A and B lie on the plane

(n12). As we shall explain in detail shortly, the integrations in the source term imply

that the integrand only depends on the lines x(AB)1 , . . . , x(AB)l
, or equivalently on the loop

momenta, pm = x(AB)m
− x(AB)m+1

, for m = 1, . . . , l. Thus the momentum-twistor space

amplitudes are formally given by the usual loop integrations,

An,k,l(1, . . . , n) =
(ig2)l

(2π)4l

l∏

m=1

∫
d4x(AB)m

Mn,k,l(1, . . . , n; {x(AB)1 , . . . , x(AB)l
}), (2.15)

where g is the Yang-Mills coupling constant. It is important to note that this definition

is somewhat formal as many of the integrals are IR-divergent and thus don’t exist in four

dimensions. To correctly define these integrations a regulator is needed, for example by

continuing the measure from four to D = 4 − 2ǫ dimensions or by adding masses to the

internal propagators. It is an important caveat that the recursion relations generate these

divergent integrands and not the correctly regulated versions.

2.3 MHV vertex expansion in momentum-twistor space

Here we review the momentum-twistor space MHV vertex expansion for N = 4 SYM as

formulated in [25] (BMS) and to where we point the reader for further details. The n-

point NkMHV tree-level superamplitude Mn,k is given by the sum of all tree-level MHV

diagrams with k propagators and k + 1 MHV vertices. Each diagram is given as a product

of factors from vertices and propagators. Each vertex is given by unity and, according to

the prescription of BMS, for each propagator separating region momenta xi, xj , one assigns

a factor [∗, î − 1, i, ĵ − 1, j], where ∗ is an arbitrary reference momentum twistor, and the

possible deformation î − 1 is defined as (and similarly for ĵ − 1),

î − 1 =





i − 1, if i − 1 is attached to the vertex preceding the

propagator, see figure 1 (a),

(i − 1 i) ∩ (∗ k − 1 k),
otherwise, where (k − 1k) is associated

with the preceding propagator, see figure 1 (b),

(2.16)

where since region momenta are ordered increasingly, “preceding” means on the i− 1 side.

In [25], it has been shown that by choosing Z∗ = (0, ια̇, 0), the above rules reproduce the

usual momentum-space MHV diagrams with reference spinor ι.

Beyond tree level, in [25], the MHV vertex expansion in the planar sector is conjec-

tured to calculate the loop integrands. The integrands defined by the recursion relations,

Mn,k,l, depend on external twistors and loop momenta, but the integrands defined from

the MHV vertex expansion, M ′
n,k,l(1, . . . , n; {A1, B1, . . . , Al, Bl}), are dual superconformal

– 7 –
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i − 1

j

i

j − 1 k

i − 1

k − 1 j

i

j − 1

(a) (b)

Figure 1. (a) Indicated propagator [∗, i− 1, i, j − 1, j] is undeformed as i − 1-th leg is attached to

preceding vertex. (b) Indicated propagator corresponds to [∗, î − 1, i, j − 1, j] with i − 1 deformed

by (k − 1k) as i − 1-th leg is not attached to the preceding vertex.

invariants, which generally depend on n external twistors and l pairs of loop twistors. By

fully integrating over 2l loop momentum super-twistors, one can formally write down the

loop amplitudes,

An,k,l(1, . . . , n) =
(ig2)l

(2π)4l

l∏

m=1

∫
d3|4ZAmd3|4ZBmM ′

n,k,l(1, . . . , n; {A1, B1, . . . , Al, Bl}),

(2.17)

where again we emphasize that the integrals are only well-defined after using IR regulators.

Before reviewing the loop-level MHV vertex expansion we first explain the relation

between Mn,k,l and M ′
n,k,l. The integration measure of a pair of loop twistors can be split as

d3|4ZAd3|4ZB = 〈λAdλA〉〈λBdλB〉〈λAλB〉
2d4xABd0|4ηAd0|4ηB , (2.18)

where, in addition to the fermionic integration measure, d4xAB is the usual loop integral

measure, interpreted as a measure on the choice of lines xAB through a pair of bosonic

momentum twistors ZA, ZB , and the measure of spinors is on the positions of ZA, ZB on

the line xAB . Now an equivalent way to integrate over positions on the line is to inte-

grate over all GL(2) transformations, thus we can write the integration over any pair of

loop twistors A,B, as the loop momentum integration, the fermionic integration, and the

GL(2) integration,
∫

d3|4ZAd3|4ZBM ′
n,k,l(A,B)=

∫
d4xAB

∫
d0|4ηAd0|4ηB

∫
〈g1dg1〉〈g2dg2〉〈g1g2〉

2M ′
n,k,l(A

′, B′)

(2.19)

where the two 2-vectors g1 = (g11, g12) and g2 = (g21, g22) represent a GL(2) transforma-

tion, g, that brings (A,B) to (A′, B′) = (A,B)gT = (g11A + g12B, g21A + g22B).

Therefore, the relation between the two versions of integrands is,

Mn,k,l =

l∏

m=1

∫

ηm

∫

GL(2)m

M ′
n,k,l, (2.20)

where the fermionic and GL(2) integrations for Am, Bm, given by eq. (2.19), have been

denoted as
∫
GL(2)m

and
∫
ηm

, respectively. For tree-level amplitudes M ′
n,k,0 = Mn,k,0 =

– 8 –
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i1 i1 − 1

i2i2 − 1

Figure 2. Vertex diagram for NMHV amplitude

Mn,k. At loop level, the complete result from MHV diagrams in momentum-twistor space

is supposed to be independent of the positions of ZA, ZB on the line xAB , which makes

any GL(2) integration trivial and yield a constant [25]. However, it is non-trivial to see

the independence of the result on the GL(2) part of the integration term by term in the

momentum twistor formulation.4

Now we briefly review the MHV vertex expansion for the loop integrands M ′
n,k,l in

momentum-twistor space [25]. The integrand M ′
n,k,l is given by the sum of all l-loop planar

MHV diagrams with 2l loop twistors and cyclically ordered n external twistors. Each

MHV diagram is given by the product of factors coming from k +2l propagators and some

vertices. Each vertex is again given by unity, and each propagator is given by [∗, , , , ]

which depends on a reference twistor and four other momentum twistors specified by the

following rules.

For a propagator separating regions of external momenta, xi and xj, the four twistors

needed are î − 1, i, ĵ − 1, j, where the deformation is defined as for tree amplitudes, ex-

cept that the preceding region momentum (k − 1 k) can be a loop region momentum la-

beled by Am, Bm. For a propagator which separates xi from loop region x(AB)m
, we need

î − 1, i, Am, B̂m, with B̂m = (Am Bm) ∩ (∗ k − 1 k) where (k − 1 k) is the preceding region

momentum, which can be either an external or a loop region. For a propagator separating

x(AB)m
and x(AB)m′

, we need Am, B̂m, Am′ , B̂m′ with similarly deformed loop twistors.

3 Tree amplitudes

As a warm-up for loop-level integrands, in this section we will prove that the MHV vertex

expansion for tree amplitudes provides an explicit solution to the BCFW recursion rela-

tions. After working out some examples, we will rewrite the expansion for general tree

amplitudes and prove its validity.

3.1 Examples

MHV. The MHV amplitude becomes trivial in momentum-twistor space, Mn,0 = 1,

which automatically satisfies eq. (2.10) since there is no inhomogeneous terms.

NMHV. For k = 1, figure 2, we have a summation over a pair of region momenta which

4We thank M. Bullimore for pointing out that this independence is manifest in the standard momentum

space MHV vertex expansion.
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label the propagator,

Mn,1 =
∑

i1≺i2≺i1+n

[∗, i1 − 1, i1, i2 − 1, i2], (3.1)

where no deformation is needed, and instead of the standard summation range i1 ≤ i2 ≤

i1 + n we have used, for example, i1 ≺ i2 to denote i1 < i2 − 1 modulo n. Since the

basic invariant vanishes when two of its arguments coincide, terms with i1 − i2 = 0,±1

do not contribute. To compare with eq. (2.10), it is convenient to choose ∗ = n, then the

summation range becomes 2 ≤ i1 ≺ i2 ≤ n − 1 and we have,

Mn,1 =
∑

2≤i1≺i2≤n−1

[n, i1 − 1, i1, i2 − 1, i2]. (3.2)

This immediately follows from eq. (2.10) given that both subamplitudes must be MHV

amplitudes, that is to say, simply unity. This result is of course nothing but the well

known result eq. (2.8). Note that the MHV vertex expansion is independent of the choices

of ∗, thus eq. (3.1) provides a cyclically invariant explicit solution to the BCFW recursion

relations.

N2MHV. For k = 2, figure 3, the summation is over two pairs of region momenta,

i1 ≺ i2 ≤ i3 ≺ i4 ≤ i1 + n,

Mn,2 =
∑

i1,i2,i3,i4

[∗, î1 − 1, i1, i2 − 1, i2][∗, î3 − 1, i3, i4 − 1, i4], (3.3)

where the summation range has been indicated before, and, from the deformation rule, we

know that when i1 = i4 modulo n, a deformation is needed, î1 − 1 = (i1−1 i1)∩(∗ i3−1 i3),

and when i3 = i2, î3 − 1 = (i3−1 i3)∩(∗ i1−1 i1) (these two boundary cases can not happen

simultaneously since the middle vertex must have at least three legs).

Again one chooses ∗ = n, then for Mn,2(1, . . . , n) the summation range can be split into

two cases, 2 ≤ i1 ≺ i2 ≤ i3 ≺ i4 ≤ n − 1 and 2 ≤ i2 ≤ i3 ≺ i4 ≤ i1 ≤ n − 1, and similarly

for Mn−1,2(2, . . . , n) with both lowest limits being 3. This corresponds to summing over

the two inequivalent “rootings”of the “1” leg, i.e. on the first and middle vertex. Then the

difference in recursion relations is given by terms in the first range with i1 = 2 and those

in the second range with i2 = 2

Mn,2(1, . . . , n) − Mn−1,2(2, . . . , n) =
∑

4≤i2≤i3≺i4≤n−1

[n, 1, 2, i2 − 1, i2][n, î3 − 1, i3, i4 − 1, i4]

+
∑

2≤i3≺i4≤i1≤n−1

[n, î1 − 1, i1, 1, 2][n, î3 − 1, i3, i4 − 1, i4].(3.4)
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Now from eq. (3.1), with the choice ∗ = n, we have for the NMHV subamplitude

Mn+2−i2,1(Ii2 , i2, ..., n) =
∑

i2≤i3≺i4≤n−1

[n, î3 − 1, i3, i4 − 1, i4] (3.5)

because the deformation needed when i3 = i2 is exactly î2 − 1 = Ii2 . Thus the first

sum in eq. (3.4) simply gives
∑

4≤i2≤i3≺i4≤n−1[n, 1, 2, i2 − 1, i2]Mi2,0(1i2 , . . . , i2 − 1, Ii2)

Mn+2−i2,1(Ii2 , i2, . . . , n).

For the second sum, we note that due to orientation reversal symmetry [25] we have

the identity,

[n, î1 − 1, i1, 1, 2][n, î3 − 1, i3, i4 − 1, i4] = [n, i1 − 1, i1, 1, 2][n, î3 − 1, i3, i4 − 1, î4] (3.6)

where î4 = (i1 − 1 i1) ∩ (n 1 2) if i4 = i1 and it is simply i4 otherwise. Thus

the second sum is equal to
∑

2≤i3≺i4≤i1≤n−1[n, 1, 2, i1 − 1, i1][n, î3 − 1, i3, i4 − 1, î4] =∑
2≤i3≺i4≤i1≤n−1[n, 1, 2, i1 − 1, i1]Mi1,1(1i1 , . . . , i1 − 1, Ii1)Mn+2−i1,0(Ii1 , i1, ..., n), where we

have used î3 − 1 = 1i1 if i3 = 2 and î4 = Ii1 when i4 = i1. Therefore, we see that

eq. (3.3)also satisfies the recursion relations.

3.2 General tree amplitudes

Generally for NkMHV tree amplitudes, in addition to summing over the distributions of n

legs into 2k ordered subsets labeled by region momenta, i1 ≤ i2 ≤ . . . ≤ i2k ≤ i1+n, one also

needs to sum over all types of MHV diagrams. To be concrete, one needs to pick a root, then

there are Ck = (2k)!
k!(k+1)! (the Catalan number) types of diagrams to be summed over, namely,

all rooted trees with k edges. It is well known that they are in one-to-one correspondence

with all non-crossing partitions of the sequence i1, i2, . . . , i2k−1, i2k into k pairs, where each

pair simply labels two region separated by an edge of the rooted tree. Here “non-crossing”

means that for the sequence a, b, c, d, one can have {(a, b), (c, d)}, {(a, d), (c, b)} as valid

partitions but not {(a, c), (b, d)}.

Each partition can be represented by a forest graph in which each region is

represented by a vertex and each pair by an edge. The non-crossing partitions

consists of the set of forests for which edges only intersect at vertices. We de-

note the set of such partitions, or equivalently rooted trees, as Jk. For exam-

ple, J1 = {{i1, i2}}, J2 = {{i1, i2; i3, i4}, {i1, i4; i2, i3}}, and J3 = {{i1, i2; i3, i4; i5, i6},

{i1, i2; i3, i6; i4, i5}, {i1, i4; i2, i3; i5, i6}, {i1, i6; i2, i3; i4, i5}, {i1, i6; i2, i5; i3, i4}}. As an ex-

ample we show graphs corresponding to the elements of J3 in figure 4. The relationship

to geometric dual diagrams should be apparent and we will make this more concrete later

when we consider diagrams with loops.

Given that the sequence i1, . . . , i2k labels all 2k ordered region momenta, each pair in

a non-crossing partition corresponds to a propagator in a MHV diagram. Thus the tree

amplitudes Mn,k given by MHV vertex expansion can be written in an explicit form,

Mn,k =
∑

1≤i1≤...≤i2k≤n

∑

jα∈Jk

k∏

m=1

[∗, ̂jα
2m−1 − 1, jα

2m−1, ̂jα
2m − 1, jα

2m], (3.7)
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Figure 4. Elements of J3

where the first summation is over all distributions of legs,5 and the second over all non-

crossing partitions jα, where jα
2m−1 and jα

2m correspond to a region pair (m = 1, . . . , k)

in the partition jα. In addition, given a pair jα
m+1 = il′′ , jα

m = il, we have the definition:

ĵα
m − 1 = (il − 1 il) ∩ (∗ il′ − 1 il′) if il = il−1, with (il−1, il′) the pair in the partition which

precedes (il, il′′), and ĵα
m − 1 = il − 1 otherwise.

As a final tree-level example, we write down the N3MHV amplitude correspond-

ing to figure 4. To be concise, we denote
∏k

m=1[∗, ̂j2m−1 − 1, j2m−1, ̂j2m − 1, j2m] by

[ĵ1, ĵ2; . . . ; ĵ2k−1, ĵ2k] where ĵ denotes possible deformation on j − 1, and for regions which

are not deformed, we simply use j instead of ĵ. Then we have

Mn,3 =
∑

i1≤...≤i6

[i1, i2; î3, i4; î5, i6]+[i1, i2; î3, î6; î4, i5]+[i1, î4; î2, i3; î5, i6]+[i1, î6; î2, i3; î4, i5]

+ [i1, î6; î2, î5; î3, i4]. (3.8)

Now it is straightforward to prove that eq. (3.7) provides an explicit solution to the

BCFW recursion relations, eq. (2.10). As always, it is convenient to choose ∗ = n, then

taking the difference of Mn,k(1, . . . , n) and Mn−1,k(2, . . . , n) we are left with all terms such

that i1 = 2. The amplitude involves all non-crossing pairings of i1 with all other regions,

i2, i4, . . . , i2k. Given a choice of pairing, say, (i1, i4), the subset of partitions in Jk with this

choice consists of all products of non-crossing partitions of i2, i3 i.e. J1(i2, i3) and i5, . . . , i2k,

i.e. Jk−2(i5, . . . , i2k). More generally, Jk can be split into (with a slight abuse of notation),

Jk = {i1, i2;Jk−1(i3, . . . , i2k)} ∪ {i1, i4;J2(i2, i3);Jk−2(i5, . . . , i2k)} ∪ . . .

· · · ∪ {i1, i2k;Jk−1(i2, . . . , i2k−1)}. (3.9)

This is graphically shown in figure 5. 6 In this way, the summation over jα splits into

k double summations, labeled by k′ = 0, . . . , k − 1. Each one consists of a summa-

tion over j′α ∈ Jk′(i2, . . . , i2k′+1), a summation over j′′α ∈ Jk−k′−1(i2k′+3, . . . , i2k), and

there is a prefactor [n, 1, 2, ̂i2k′+2 − 1, i2k′+2]. The summation over distributions of legs

can be written as a summation over i2k′+2, a summation over 1 < i2 ≤ . . . ≤ i2k′+1,

as well as a summation over i2k′+3 ≤ . . . ≤ i2k < n. The remaining factors also split

5While this is the general summation range, inside each type of the diagrams, a ’≤’ will be replace by

’≺’ whenever two adjacent labels are separated by a propagator.
6The decomposition has a loop generalization, which is shown in figure 12 and here we only concerned

with the case l = 0.
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Figure 5. Factorization of non-crossing partition about the pair (i1, i2m′′).

into the product of two corresponding pieces,
∏k′

m=1[n, ̂j′′α2m−1 − 1, j′α2m−1,
̂j′α2m − 1, j′α2m] and

∏k−1−k′

m=1 [n, ̂j′α2m−1 − 1, j′′α2m−1,
̂j′′α2m − 1, j′′α2m].7

Therefore, the difference can be written as a sum of k terms, each being a product of

two summations. From eq. (3.7), the second sum is,

∑

i2k′+2≤i2k′+3≤...≤i2k<n

∑

j′′α∈Jk−k′−1

k−1−k′∏

m=1

[n, ̂j′′α2m−1 − 1, j′′α2m−1,
̂j′′α2m − 1, j′′α2m]

= Mn+2−i2k′+2,k−1−k′( ̂i2k′+2 − 1, i2k′+2, . . . , n), (3.10)

where one always needs the deformation ̂i2k′+2 − 1 = (i2k′+2 − 1 i2k′+2) ∩ (n12), which is

exactly Ii2k′+2
in eq. (2.14). On the other hand, due to the reversal symmetry, one can shift

the deformation on i2k′+2−1 to i2k′+1, which is î2k′+1 = (i2k′+2−1 i2k′+2)∩(n12) = Ii2k′+2
,

thus the first summation is,

∑

1<i2≤...≤i2k′+1≤i2k′+2

∑

j′α∈Jk′

k′∏

m=1

[n, ̂j′α2m−1 − 1, j′α2m−1,
̂j′α2m − 1, j′α2m]

= Mi2k′+2,k′(1̂, . . . , i2k′+2 − 1, Ii2k′+2
), (3.11)

where 1̂ = (1 2) ∩ (n i2k′+2 − 1 i2k′+2) is 1̂i2k′+2
in eq. (2.14). Therefore, we obtain,

Mn,k − Mn−1,k =
∑

k′=0,...,k−1

∑

i2k′+2

[n, 1, 2, i2k′+2 − 1, i2k′+2]

×Mi2k′+2,k′(1̂i2k′+2
, . . . , i2k′+2 − 1, Ii2k′+2

)Mn+2−i2k′+2,k−1−k′(Ii2k′+2
, i2k′+2, . . . , n), (3.12)

which is nothing but the BCFW recursion relations, eq. (2.10).

Since the formula (3.7) is a rewriting of the momentum-space MHV vertex expansion,

it must be independent of the reference twistor ∗. In fact, it is straightforward to check

that by choosing ∗ to be any other external twistor, the formula reproduces other forms

of tree amplitudes, corresponding to those calculated from BCFW recursion relations with

7Note that in the case k′ = 0 (k − 1), J2k′ (J2(k−1−k′)) is the empty set, and the first (second) piece is

given by unity.
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Figure 6. Vertex diagram for one-loop MHV amplitude

different shifts. As discussed in [17, 18], it is highly non-trivial to prove the equivalence

of these different forms, which guarantees important properties, such as cyclic invariance

and absence of spurious poles, of the tree amplitudes. It is significant that the formula

obtained here relates different BCFW forms of the tree amplitude, and it is manifestly

cyclically invariant.

4 All-loop integrands

Now we move to integrands of all-loop amplitudes in the planar sector. The MHV vertex

expansion becomes more involved at higher loops, so we will first examine carefully the

one-loop MHV and NMHV integrands as solutions to the generalized recursion relations.

Then we propose and prove a general formula for the MHV vertex expansion in terms of

non-crossing partitions, as a straightforward generalization of the tree-level case.

4.1 Examples of loop integrands

4.1.1 One-loop MHV integrand

The MHV one-loop integrand, M ′
n,0,1, which only receives contribution from the “bubble”

topology, is given by, figure 6,

M ′
n,0,1 =

∑

i1<i2

[∗, i1 − 1, i1, A,B′][∗, i2 − 1, i2, A,B′′], (4.1)

where B′ = (AB)∩(∗ i2−1 i2) and B′′ = (AB)∩(∗ i1−1 i1). We shall prove that eq. (4.1),

after doing fermionic and GL(2) integrations, provides an explicit solution to eq. (2.12).

Each term of M ′
n,0,1 only depends on the line (A,B) and we note that (AB) = (AB′).

Since B′′ = (AB′)∩(∗ i1−1 i1), and the fermionic and GL(2) integration measure in Mn,0,1

are invariant under the shift B → B′, we have that (using the relation between integrands

M and M ′)

Mn,0,1 =
∑

i1<i2

∫

η
AB̃′

∫

GL(2)
AB̃′

[∗, i1 − 1, i1, A, B̃′][∗, i2 − 1, i2, A,B′′] . (4.2)

Here it is important to clarify the integration contour. The GL(2) integration relating

M ′
n,0,1 to Mn,0,1 is trivial. The GL(2)AB̃′ integration above should be understood as a

contour integration forcing the dummy variable B̃′ to lie in the plane defined by (∗ i2−1 i2)
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i.e. at the point B′. Now since after GL(2) integration the result only depends on xAB

which is also xAB̃′ , we can shift it back,

Mn,0,1 =
∑

i1<i2

∫

η

∫

GL(2)
[∗, i1 − 1, i1, A,B][∗, i2 − 1, i2, A,B′′]. (4.3)

Note that this is actually just a change of dummy variable because after integration Mn,0,1

only depends on B through xAB , which satisfies xAB = xAB′ .

If we choose ∗ = n, then the difference between Mn,0,1 and Mn−1,0,1 is given by terms

with i1 = 2,

Mn,0,1 − Mn−1,0,1 =

∫

η

∫

GL(2)
[n, 1, 2, A,B]

∑

2<i2<n

[n, i2 − 1, i2, A, B̂], (4.4)

where we have used B′′ = B̂ for i1 = 2 and ∗ = n. The only contribution in eq. (2.12) for

this case is the source term with Mn+2,1,0(1AB , . . . , n,A, B̂). As we will show shortly, in

the NMHV tree amplitudes eq. (3.1) with ∗ = n, only terms which have at least one factor

with both A and B̂ as arguments survive the fermionic integration. We conclude that the

one-loop MHV integrand from the MHV vertex expansion satisfies the recursion relations.

We can in fact go further in this case as it is straightforward to explicitly perform the

fermionic and GL(2) integrations,

Mn,0,1 =
∑

1<i1<i2<n

[
〈AB|(n i1 − 1 i1) ∩ (n i2 − 1 i2)〉

2

×
1

〈A,B, i1−1, i1〉〈A,B, i1−1, n〉〈A,B, i1, n〉〈A,B, i2−1, i2〉〈A,B, i2−1, n〉〈A,B, i2, n〉

]
,

(4.5)

where in the numerator 〈AB|(n i1 − 1 i1)∩ (n i2 − 1 i2)〉 = 〈A,n, i1 − 1, i1〉〈B,n, i2 − 1, i2〉−

〈B,n, i1 − 1, i1〉〈A,n, i2 − 1, i2〉, with (n i1 − 1 i1) ∩ (n i2 − 1 i2) the intersecting line of the

two planes, and, as promised, the GL(2) integration renders each term only a function of

line xAB .

4.1.2 A lemma for the source term

Here we prove a lemma for the source term: in the MHV vertex expansion of the integrand

Mn+2,k+1,l−1(1̂AB , . . . , n,A, B̂), only those terms, which have at least one factor with both

loop twistors and no factor with a single loop twistor, survive the fermionic integration.

This is crucial for relating the MHV vertex expansion and recursion relations, since no

other terms should appear in the MHV vertex expansion.

First, any factor with a single loop twistor, A or B̂, vanishes by itself. For convenience,

we choose ∗ = n for the MHV vertex expansion of Mn+2,k+1,l−1(1̂AB , . . . , n,A, B̂), then

invariants with only A vanish, [n, x, y, n,A] = 0 for any x, y, and thus we focus on the

factors with only B̂, i.e. [n, x, y, B̂, 1̂AB ].

Since B̂ = (AB) ∩ (n 1 2) and 1̂AB = (1 2) ∩ (n AB), n, B̂ and 1̂AB must lie on the

same line in the momentum-twistor space, and it is straightforward to write down the
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Figure 7. Bubble + leg and triangle diagrams for one-loop NMHV amplitude

linear dependence,8

〈x, y, B̂, 1̂AB〉Zn + 〈1̂AB , n, x, y〉ZB̂ + 〈n, x, y, B̂〉Z1̂AB
= 0, (4.6)

for any x, y. In the fermionic delta function of [n, x, y, B̂, 1̂AB ], the sum of the three terms

with ηn, ηB̂ and η1̂AB
vanishes since it is the fermionic part of the above expression, then

we have,

[n, x, y, B̂, 1̂AB ] =
δ0|4(〈y, B̂, 1̂AB , n〉ηx + 〈B̂, 1̂AB , n, x〉ηy)

〈1̂AB , n, x, y〉〈n, x, y, B̂〉〈x, y, B̂, 1̂AB〉〈y, B̂, 1̂AB , n〉〈B̂, 1̂AB , n, x〉
, (4.7)

where, due to the linear dependence of n, B̂ and 1̂AB , the numerator has four zeros from

e.g. 〈y, B̂, 1̂AB , n〉4 or 〈B̂, 1̂AB , n, x〉4, and the denominator has two zeros from the last two

factors, so it vanishes identically.

In addition, for any term to survive the fermionic integration over ηA, ηB , one needs

four ηA and four ηB , which means the term must have at least two factors containing

(possibly deformed) loop twistors. Since there is a prefactor [n, 1, 2, A,B], this excludes

any term in Mn+2,k+1,l−1 which has no factor with any loop twistors. Thus we have seen,

only terms which have factor(s) with both A and B̂ and no factor with only one of them,

A or B̂, survive the fermionic integration.

4.1.3 One-loop NMHV integrand

The next simplest case is the one-loop NMHV integrand, M ′
n,1,1. The MHV vertex expan-

sion has contributions from both “triangle” and “bubble + leg” topologies see figure 7, and

the result is,

M ′
n,1,1 =

∑

i1<i2<i3

[∗, i1 − 1, i1, A,B′][∗, i2 − 1, i2, A,B′′][∗, i3 − 1, i3, A,B′′′]

+
∑

i1<i2≤i3≺i4

[∗, î1 − 1, i1, A,B∗][∗, i2 − 1, i2, A,B∗∗][∗, î3 − 1, i3, i4 − 1, i4], (4.8)

8The easiest way to see it is the following: the sum of the first two terms give (n B̂) ∩ (1̂AB x y) which

is projectively 1̂AB since the three are on a line, thus the L.H.S. is proportional to 1̂AB ; the sum of the

last two terms give (B̂ 1̂AB) ∩ (n x y) which is projectively n, thus the L.H.S. is proportional to n, and we

conclude it must vanish.
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where in the first sum, B′ = (AB)∩(∗ i3−1 i3), B
′′ = (AB)∩(∗ i1−1 i1), and B′′′ = (AB)∩

(∗ i2 − 1 i2); in the second sum, deformations are needed, î1 − 1 = (i1 − 1 i1) ∩ (∗ i4 − 1 i4)

when i1 = i4 module n, î3 − 1 = (i3 − 1 i3) ∩ (∗AB′′) when i3 = i2, and we also have

B∗ = (AB) ∩ (∗ i2 − 1 i2), B
∗∗ = (AB) ∩ (∗ î1 − 1 i1).

Now we prove that eq. (4.8) also satisfies the recursion relations. Choosing ∗ = n, and

noting that in each term of the summation we can use the same trick as in the MHV case

to replace B′, B∗ or B∗∗ by B without changing anything else, then the difference of Mn,1,1

and Mn−1,1,1 is given by i1 = 2 terms in the first sum, and terms with i1 = 2 or i2 = 2 or

i3 = 2 or i4 = 2 in the second sum,

Mn,1,1−Mn−1,1,1 =

∫

η

∫

GL(2)
{

∑

2<i2<i3<n

[n, 1, 2, A,B][n, i2−1, i2, A,B′′][n, i3−1, i3, A, B̂′′]

+
∑

2<i2≤i3≺i4<n

[n, 1, 2, A,B][n, i2 − 1, i2, A,B∗∗][n, î3 − 1, i3, i4 − 1, i4]

+
∑

2≤i3≺i4≤i1<n

[n, î1 − 1, i1, A,B∗][n, 1, 2, A,B][n, î3 − 1, i3, i4 − 1, i4]

+
∑

3<i4≤i1<i2<n

[n, î1 − 1, i1, A,B∗][n, i2 − 1, i2, A,B∗∗][n, 1, 2, i4 − 1, i4]

+
∑

2≤i1<i2≤i3<n

[n, î1 − 1, i1, A,B∗][n, i2 − 1, î2, A,B∗∗][n, i3 − 1, i3, 1, 2]}, (4.9)

where in the first line we have replaced B′′′ = (AB)∩ (n i2 −1 i2) by B̂′′ = (AB′′)∩ (n i2 −

1, i2) since (AB) = (AB′′), and in the last line we have used the reversal symmetry to

shift the deformation from i3 − 1 to i2.

Since in the first three lines, B′′ = B∗ = B∗∗ = B̂ and B̂′′ =
ˆ̂
Bi2 which have

been defined in eq. (2.14), from eq. (3.3) we immediately recognize that these terms

appear in Mn+2,2,0(1̂AB , . . . , n,A, B̂), and all other terms without A or B̂ simply van-

ish upon the fermionic integration, thus these three lines combine to the source term,∫
η

∫
GL(2)[n, 1, 2, A,B]Mn+2,2,0(1̂AB , . . . , n,A, B̂). In the last two lines, B∗ and B∗∗ are the

same as in eq. (4.1), and î1 − 1 = 1̂i4 , 1̂i3 when i1 = 2 in the fourth and the last line,

respectively, also î2 = Ii3, thus, after the fermionic and GL(2) integration, they combine to

the factorization term
∑

j Mj,0,1Mn+2−j,0,0 +Mj,0,0Mn+2−j,0,1. Therefore, one-loop NMHV

integrand from the MHV vertex expansion also satisfies recursion relations.

4.2 All-loop integrands

Here we propose an explicit formula for all-loop integrands from the MHV vertex expansion,

M ′
n,k,l =

1

l!

∑

jα∈J l
k

∑

1≤i1≤...≤im≤n

∏

e∈E(jα)

(±)[∗, ̂v1(e) − 1, v1(e), ̂v2(e) − 1, v2(e)]. (4.10)

Here J l
k is the set of all non-crossing partitions jα(X, I,E, F ). Each partition jα is a forest

with the following elements: m cyclically ordered9 external points corresponding to region

9We will consider diagrams where all external points are distinct. However we allow the sum over regions

to include degenerate cases il = il−1. Alternatively, one could allow the vertices to coincide but restrict the

sum to be over distinct il < il−1.
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momenta, X = {i1, . . . , im}, where each point has one edge connected to it; l internal

points corresponding to loop momenta, I = {A1, . . . , Al}, where multiple edges can attach

to the same point;10 k+2l non-crossing edges corresponding to propagators, E, where each

edge e is associated with its two vertices, vj(e) ∈ X ∪ I for j = 1, 2, and f faces formed by

internal points and edges connecting them, F . By definition, J l
k includes all partitions with

all possible permutations of l internal points, {A1, . . . , Al}. From eq. (2.17), the l pairs of

loop twistors are dummy variables in the integrated amplitude, and any permutation gives

the same result, thus one needs an 1/l! factor to compensate the overcounting .

It is obvious that f = 0 for l ≤ 2, and for l ≥ 3, there can be faces with the range

0 ≤ f ≤ k + l − 2. If f = 0, the range of m is k + l + 1 ≤ m ≤ 2k + 2l, while for f > 0,

we have k + l − f + 1 ≤ m ≤ 2k + 2l − 2f + 1. The set of partitions with l internal

points and k + 2l edges has been denoted by J l
k. This set of diagrams is the union of

sets of diagrams with l internal points, k + 2l edges, m external points, J l
k = ∪2k+2l

m=2 J l
k;m.

We can further decompose the graphs by the number of faces, f , J l
k;m = ∪k+l+1−m

f=0 J l
k;m,f .

We define J l
k;m,f so that all external points are distinct, thus each external leg is directly

connected to a single edge and as mentioned f ≥ 1 only for l ≥ 3. These partitions are

in one-to-one correspondence with the planar MHV diagrams via their dual graphs as we

explain in appendix A in slightly more detail. These dual graphs have appeared in this

context recently in [27, 29].

Given any such partition, we sum over all possible distributions of n legs into m ordered

intervals, 1 ≤ i1 ≤ . . . ≤ im ≤ n, where it is obvious that some degenerate cases drop out.

In the product of edges, a minus sign is needed when one of the two vertices are one of

the internal points, because we define the internal points to be A, vj(e) = Al′ , and then

vj(e) − 1 = Bl′ . In addition, ̂vj(e) − 1 = vj(e) − 1 when vj(e) = im′ ∈ X for some m′

and im′ 6= im′−1; a shift is needed, ̂vj(e) − 1 = (vj(e) − 1 vj(e)) ∩ (∗ v − 1 v) when either

vj(e) = im′ = im′−1 or vj(e) ∈ I, where v is the other vertex of the preceding edge e′ which

shares vj(e) with e.

4.2.1 Examples of partitions

We use a few examples to illustrate eq. (4.10). At tree level, the partitions have k edges,

no internal points, and so must have 2k external points, i.e. J0
k = J0

k |m=2k and it is simply

given by the Jk which occurred at tree level, where each element can be represented by a

diagram as in figure 4, and eq. (4.10) reduces to eq. (3.7) in this case. At loop level we must

include internal points in our partition diagrams. The simplest case, one-loop MHV has

only one element, J1
0 = {j} with X(j) = {i1, i2}, I(j) = {il}, E(j) = {i1, il; i2, il}, which

corresponds to the diagram in 8, and we have exactly eq. (4.1). For one-loop NMHV we

have J1
1 = {ja, jb, jc, jd, je}, where ja has m = 3 (see 9 (a)) and jb to je have m = 4 (see 9

(b),(c),(d),(e)), and the integrand is given by the sum of five contributions, eq. (4.8). This

can be straightforwardly continued to higher k. Similarly one can continue to higher-loop;

10While the graphs can have any number of edges coincident with an internal vertex for the amplitudes

only those partitions with at least two distinct edges attached to each internal vertex will give a non-

vanishing contribution. This is essentially due to the fermionic integration and in part corresponds to the

absence of tadpole diagrams in the MHV expansion.
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Figure 8. One-loop MHV partition.
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Figure 9. One-loop NMHV partitions

(a) (b) (c)

Figure 10. Two-loop MHV diagrams

for the two-loop MHV diagram the set J2
0 has elements shown in 11 (plus permutations)

with m = 3, 4 which correspond to the MHV diagrams figure 10. The diagrams (a) and

(c) are those listed in [25], but diagram (b) is also a valid partition, though one which of

course vanishes under the η integration.

4.2.2 Proof

Now we proceed to prove inductively that eq. (4.10) satisfies the generalized recursions

relations. This provides strong evidence that it is indeed a correct expression for the

all-loop integrand.

By assumption eq. (4.10) is independent of the ∗, and so one again chooses
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Figure 11. Two-loop MHV partitions

l

m

1

2

3

m′

⇒

l′

l − l′

m m − 1

m − 21

2

3 4

m′

Figure 12. Factorization of loop diagram of type F .

∗ = n for convenience. Taking the difference
∫
{l}(M

′
n,k,l(1, . . . , n; {A,B}{l}) −

Mn−1,k,l(2, . . . , n; {A,B}{l})), where the l-fold fermionic and GL(2) integrations have been

denoted implicitly, only terms with i1 = 2 survive. Thus we pick out the edge connecting

i1 to another vertex v. There are two possibilities, v ∈ X and v ∈ I, which we now discuss

in turn.

For a partition jα ∈ J l
k with m external legs and with v = im′ (m′ = 2, . . . ,m), one

can pull out a factor from the set of edges e0 = (i1, im′), corresponding to the invariant

[n, 1, 2, ̂im′ − 1, im′ ], for each m′, figure 12. This gives rise to the terms

F =
1

l!

∑

jα∈J l
k

m∑

m′=2

n−1∑

im′=4

∫

{l}

∑

1<i2≤...≤im′
−1≤im′

∑

im′≤im′+1≤...≤im<n

∏

e 6=e0

[e] , (4.11)

where we denote the invariants as [e] = ±[n, ̂v1(e) − 1, v1(e), ̂v2(e) − 1, v2(e)].

Now one can rewrite the summation over the partitions for the remaining k + 2l − 1

factors as a summation over J l
k−1(m

′), which is defined as the set of all partitions in J l
k

with i1, im′ and the edge connecting them removed. By the definition of J l
k, each partition

j ∈ J l
k−1(m

′) splits into two sub-partitions jL and jR, both of which are non-crossing

partitions. For a partition j with m external legs, the first subpartition, jL ∈ J l′

k′;m′−2, has

m′− 2 external legs while jR ∈ J l−l′

k−1−k′;m−m′ has m−m′ external legs. Note that the total

number of internal points is l, and the total number of edges is k′+2l′+(k−1−k′)+2(l−l′) =

k + 2l − 1. Thus every element of J l
k−1(m

′), which now includes partitions with arbitrary
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m, is an element of ∪l
l′=0 ∪

k−1
k′=0 J l′

k′;m′−2 ⊗ J l−l′

k−1−k′ . Conversely, given any jL ∈ J l′

k′;m′−2 and

jR ∈ J l−l′

k−1−k′ , the combined partition jL ⊗ jR must be an element of J l
k−1(m

′), thus we

have the decomposition,

J l
k−1(m

′) = ∪l
l′=0 ∪

k−1
k′=0 J l′

k′;m′−2 ⊗ J l−l′

k−1−k′ , (4.12)

where we have included all ways of distributing l internal points into two sets of l′ and

l− l′ points; for a given k′, no partition exists beyond the range k′ + l′ − f ′ + 1 ≤ m′ − 2 ≤

2k′ + 2l′ − 2f ′ + 1 where f ′ and f − f ′ are the numbers of faces in the two partitions

respectively.

Now if we relabel the dummy variables, j = im′ ,mL = m′ − 2,mR = m −m′ and note

that k′ + l′ − f ′ + 1 ≤ mL ≤ 2k′ + 2l′ − 2f ′ + 1 and k − k′ + l − l′ + f − f ′ ≤ mR ≤

2(k − k′) + 2(l − l′) − 2(f − f ′) − 1 for given k′, l′, f ′, then by eq. (4.12), F splits into the

left and the right parts,

F =
1

l!

∑

σl

n−1∑

j=4

[n, 1, 2, ĵ−1, j]

k−1∑

k′=0

∑

jα
L
∈J l′

k′

∑

1<i2≤...≤imL+1≤j

∫

{L}

∏

e∈E(jα
L
)

[e](1, . . . , j−1, j; {A,B}L)

×
∑

jα
R
∈J l−l′

k′−1−k′

∑

j≤imL+3≤...≤imL+mR+2<n

∫

{R}

∏

e∈E(jα
R

)

[e](j − 1, j, . . . , n{A,B}R), (4.13)

where σl denotes the summation over all ways of distributing {A,B}{l} into {A,B}L with

l′ points, and {A,B}R with l − l′ points, for l′ = 0, . . . , l, and the integral
∫
{l} splits into∫

{L} and
∫
{R} correspondingly.

To proceed, we note when j = im′ = im′−1, a deformation ĵ − 1 is needed in the factor

[n, 1, 2, ĵ − 1, j], which is an unwanted feature. However, due to the reversal symmetry as

in the tree-level case, one can shift the deformation from j − 1 in the factor to the last leg

j in the left part, which is (j − 1 j)∩ (n 1 2) = Ij because the other vertex in the preceding

edge is i1 = 2. In addition, note that i2 − 1 needs to be deformed when i2 = i1 = 2,

but, as the first external point in jα
L, this is not a usual deformation inside the left part,

thus can only be achieved by a deformation of its first leg 1, 1̂ = (1 2) ∩ (n j − 1 j) = 1̂j ;

similarly, the deformation of im′+1 − 1 when im′+1 = im′ = j is really a deformation on

the first leg of the right part, j − 1, ĵ − 1 = (j − 1 j) ∩ (n 1 2) = Ij. Then by the induction

assumption, the left and right parts are given by Mj,k′,l′(1̂j , . . . , j − 1, Ij ; {A,B}L) and

Mn+2−j,k−1−k′,l−l′(Ij , j, . . . , n; {A,B}R), respectively,

F =
1

l!

∑

σl

n−1∑

j=4

[n, 1, 2, j − 1, j]
[ k−1∑

k′=0

Mj,k′,l′(1̂j , . . . , j − 1, Ij ; {A,B}L)

×Mn+2−j,k−1−k′,l−l′(Ij , j, . . . , n; {A,B}R)
]
,(4.14)

which, together with Mn−1,k,l, give exactly the factorization contribution to Mn,k,l in the

recursion relations.

The remaining terms are those with v = Al0(l0 = 1, . . . , l), which all have a factor

[n, 1, 2, Al0 , B̂l0 ] figure 13. As we have shown in the one-loop MHV and NMHV cases, for
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Figure 13. Factorization of loop diagram of type S.

each term one can always redefine the integration variables to shift B̂l0 back to Bl0 without

affecting anything else. For a term to survive the integrations, Al0 in the partition should

also be connected to (at least one) other vertices vi for i = 1, . . . , s. By pulling out the

factor and considering the rest as a new partition, one is essentially removing an external

point i1 = 2 and an internal point Al0 , and adding s coinciding external points v′i = Al0 ,

which are connected to vi for i = 1, . . . , s respectively.

Note that the new partition, which is obviously also non-crossing, has l − 1 internal

points, and k+2l−1 = k+1+2(l−1) edges which means it belongs to the k+1 sector; the

number of faces is f − s+1 ≤ f ′ ≤ f , and the number of external points is m′ = m+ s− 1,

which is in the range k + l− f + s, . . . , 2k + 2l− 2f + s. Denote the set of partitions found

by pulling s points to the boundary as J l−1
k+1(s), this consists of diagrams which have the

last s coinciding external points connected to Al0 . Then the full set of all partitions found

by removing a leg connecting an external vertex to an internal vertex, Sl
k is the union of

J l−1
k+1(s) for all possible s. Conversely taking any element of Sl

k and joining together the

set of legs connected to Al0 we find an element of J l−1
k+1(s) for some s. Thus

Sl
k = ∪sJ

l−1
k+1(s) . (4.15)

In addition to the summation over jα ∈ J l−1
k+1(s), we also sum over the previous external

points, 1 < i2 ≤ . . . ≤ im′−s+1 < n, while constraining the added, last s external points to

be fixed at Al0 , i.e. im′−s+2 = . . . = im′+1 = Al0 , for all possible s,

S =
1

l!

l∑

l0=1

∫

{l}/l0

∫

l0

[n, 1, 2, Al0 , Bl0 ]
∑

s

∑

jα∈J l−1
k+1(s)

∑

1<i2≤...≤im′
−s+1<n

∏

e∈E(jα)

(±)[n, ̂v1(e) − 1, v1(e), ̂v2(e) − 1, v2(e)]|im′
−s+2=...=im′+1=Al0

, (4.16)

where the contribution is denoted as S. Since we have included all permutations of internal

points, any internal point Al0 can be connected to i1 = 2, thus there is a summation over l0.

Now if we relax the constraints and generally sum over 2 ≤ i2 ≤ . . . ≤ im′+1 ≤ n + 2

with n + 1 = Bl0 and n + 2 = Al0 , then by splitting the last coinciding s points of any

partition in J l−1
k+1(s) ⊆ Sl

k, one obtains a partition in J l−1
k+1; conversely, by joining the
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last s points of any partition in J l−1
k+1 for any possible s, we obtain either a partition in

J l−1
k+1(s) ⊆ Sl

k, or a partition with multiple edges connecting the same pair of points, which

vanishes immediately. Denoting the set of these bubble diagrams as Bl
k, we have,

Sl
k ∪ Bl

k = J l−1
k+1. (4.17)

By the induction assumption, and note that there is no contribution from Bl
k, then the

summations and the integrations
∫
{l}/l0

, as well as a factor 1/(l − 1)!, give Mn+2,k+1,l−1,

1

(l − 1)!

∫

{l}/l0

∑

jα∈J l−1
k+1

∑

2≤i2≤...≤im′+1≤n+2

∏

e∈E(jα)

(±)[n, ̂v1(e) − 1, v1(e), ̂v2(e) − 1, v2(e)]

= Mn+2,k+1,l−1(1̂Al0
Bl0

, . . . , n, B̂l0 , Al0 ; {A,B}{l}/l0), (4.18)

where one needs a deformation on 1 because the deformation for i2 when i2 = i1 = 2

is only achieved by always using 1̂ = (1 2) ∩ (n, Al0 Bl0) = 1̂Al0
Bl0

; also the deformation

B̂l0 = (Al0 Bl0)∩ (n 1 2) is not a usual deformation in Mn+2,k+1,l−1, thus it is only achieved

by always using B̂l0, and by the same argument before, all other deformed Bl0 can be

defined by the same deformation acting on B̂l0 .

By relaxing the constraints, we have included some unwanted terms. Since eq. (4.16)

already has all terms with at least one factor (s ≥ 1) containing both Al0 and Bl0 (in

addition to the prefactor [n, 1, 2, Al0 , Bl0 ]), as we have shown, all unwanted terms vanish

after the integration
∫
l0
. Thus we can indeed write the contribution S as an integration of

Mn+2,k+1,l−1,

S =
1

l

l∑

l0=1

∫

l0

[n, 1, 2, Al0 , Bl0 ]Mn+2,k+1,l−1(1̂Al0
Bl0

, . . . , n,Al0 , B̂l0 ; {A,B}{l}/l0), (4.19)

where we have exchanged Al0 and B̂l0 because in the surviving terms, either order gives the

same result. Finally, by combining F from eq. (4.14) and the source term S from eq. (4.16)

together,

Mn,k,l(1, . . . , n; {A,B}l) = Mn−1,k,l(2, . . . , n; {A,B}l) + F + S, (4.20)

we have seen that eq. (4.10) indeed gives an explicit solution to the recursion relations to

all loops. This provides strong evidence for the all-loop MHV vertex expansion eq. (4.10).

We stress again that the general formula eq. (4.10) is completely cyclically invariant

and thus it can generate different forms of all-loop integrands by choosing different reference

twistors. By considering generalized BCFW relations with different shifts one can see that

the expression eq. (4.10) is valid for a choice of the reference twistor equal to any of the

external twistors. However, this does not prove that the formula is completely independent

of the choice of such a reference twistor. It should be possible to prove this by considering

all-line shifts as in the standard case.

Just as we have shown that the MHV diagrams corresponding to the graphs in J l
k

satisfy a recursion relation, one can similarly derive a recursion relation for the number of

graphs. To be specific, let us consider the class of non-crossing graphs described above:
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Figure 14. One-loop NMHV tadpole partition.

with m external points, l internal points, and k+2l edges. We define C l
k;m to be the number

of non-crossing partitions or dual graphs, restricted to graphs with distinct external points,

i.e. they all have exactly three adjacent edges, but relaxing the definition to include graphs

with internal faces with one or two edges, i.e. bubbles or tadpoles attached to internal

vertices, for example C1
1;3 would now include figure 14 in addition to figure 9 (a). C l

k;m

satisfies the recursion relation

C l
k;m =

l∑

l′=0

k−1∑

k′=0

m∑

m′=2

C l′

k′;m′−2C
l−l′

k−k′−1;m−m′ +

smax∑

s=1

C l−1
k+1;m+s−1 (4.21)

where smax = 1 if C l
k;m has no internal faces, smax = 2 if C l

k;m has one internal face, and

smax = 2 + fmax for fmax > 1 where fmax is the maximum number of faces allowed in C l
k;m

which is 0 for l = 0 and k + l − m + 1 for l < 0. As a boundary condition, we define

C0
0;0 = 1.

5 Conclusions and outlook

In this work we have shown that the expressions for the tree-level amplitudes and loop

integrands following from the momentum twistor space MHV vertex expansion satisfy the

ABCCT recursion relations. This provides strong evidence for the validity of the MHV

vertex expansion to all loop order and the independence of the expressions on the choice

of reference twistor.11 Correspondingly, the expressions from the MHV expansion provide

manifestly cyclicly invariant solutions of the ABCCT recursion relations.

In BCFW and ABCCT recursion relations, the many important properties of tree

amplitudes and loop integrands, such as cyclic-invariance, absence of spurious poles, corre-

spond to a set of highly non-trivial relations between rational functions [18]. At tree-level,

these relations can be understood as arising from the global residue theorem applied to

the Grassmannian integral [18, 30], and generalizations to loop-level have been suggested

in [23]. It would be interesting to see how those relations, or the residue theorem, arise

from the explicit solution which unifies the different forms of loop integrands. Furthermore,

whether it is possible to obtain the general local form of integrands for all numbers of legs

and all loop orders, generalizing results of [23].

Of course one is ultimately interested in the integrated expressions and so a regulator

for the IR divergences must be introduced. A convenient choice, which can be implemented

11We have shown that the MHV expansion is valid for a choice of the reference twistor equal to any of

the external twistors.
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in momentum twistor space [31, 32], is a mass-regulator which corresponds to Higgsing the

theory e.g. [33, 34] (see [35, 36] for recent use of this regulator in explicit calculations).

While this regulator is natural from the dual conformal point of view, the full Yangian

symmetry, in particular the usual conformal symmetry, is still not well-understood in the

presence of IR divergences and näıvely it becomes anomalous. At tree-level it was shown

that the superconformal and dual superconformal symmetries, properly understood [37, 38],

could be used to uniquely fix the tree level amplitudes [37]. This was equivalent to using

the näıve symmetry generators and accounting for the collinear or soft behavior of the

amplitudes [39]. At loop level it was further shown how to deform the symmetry generators,

to account for the anomalous contributions arising from the regulator, acting on the full

one-loop amplitudes [40]. In that work the amplitudes were all defined using the version

of dimensional reduction commonly used in explicit calculations of amplitudes. A related

prescription for the symmetry generators, based on an all-loop generalization of the CSW

prescription combined with a novel regulator was proposed in [38]. Since we have written

down all-loop integrands in a concise form, it would be interesting to see if the symmetries,

again defined appropriately, can be used to determine these integrands. To extend this to

the full all-loop amplitudes it may be useful to reconsider these earlier calculations in the

momentum twistor space formulation and with the mass regulator. In a perhaps related

direction, differential operators which relate integrals at different loop orders were recently

found in momentum twistor space [41].

In work closely related to the development of the momentum twistor MHV expansion,

Mason and Skinner [27] showed that the correlations of the Wilson loop in momentum

twistor space lead exactly to the MHV expansion for scattering amplitudes but with the

diagrams being the planar duals of the MHV diagrams. Another, presumably equivalent

or related, proposal for a supersymmetric Wilson loop [28], building on the considerations

of [42, 43], has been shown to satisfy recursion relations equivalent to those of ABCCT at

tree and loop level. Relatedly, Brandhuber et al [29] presented a set of dual momentum

space rules, interpreted as dual momentum space Wilson loop diagrams. These rules are

equivalent to the ordinary MHV rules and simply correspond to their dual graph repre-

sentation. In our work we have introduced non-crossing partitions which are in one-to-one

correspondence with the dual MHV graphs. It may be fruitful to understand exactly the

relation between the different Wilson loop and amplitude graphical expansions. In partic-

ular, the explicit formula we obtained should naturally follow from a dual graph expansion

of the Wilson loops.

In demonstrating that the MHV expansion satisfies the ABCCT relations we have made

use of the freedom to choose the reference twistor. However, while it is almost certainly true

that the expressions are independent of this choice it would be nice to prove it. Our result

is valid for a choice of the reference twistor equal to any of the external twistors, since it

can be derived from recursion relations by shifting any external twistor. Thus this provides

some evidence for the arbitrary nature of the reference twistor. In a very recent paper [44],

Bullimore adopted a complementary method to show the MHV expansion satisfies recursion

relations derived from the momentum-twistor version of the all-line shift [11, 12], thus it is

at least valid for all reference twistors of the form Z∗ = (0, ια̇, 0).
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It may also be possible to extend these results to wider class of observables such as form

factors. The string dual of these observables is also described by an integrable model and

their strong coupling value is calculable by a set of equations of the Y-system form [45]. At

weak coupling there is evidence [46] of dual conformal symmetry or at least a residue thereof

and so they may be expressible in terms of Yangian invariants. It would be interesting to

investigate whether recursion relations for these quantities can be found.

Finally, we emphasize that rewriting the MHV expansion in terms of non-crossing

partitions has the advantage of systematically organizing all planar MHV diagrams, and

yielding more explicit results. As a byproduct, our expressions for the MHV expansion,

combined with the ABCCT relations, provide a simple recursive formula for the number of

generalized non-crossing partitions or equivalently a particular class of dual planar graphs.
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A Non-crossing partitions and dual diagrams

The non-crossing partitions we have introduced are obviously closely related to the dual

graphs of the MHV vertex diagrams composing the amplitude (which have appeared in this

context recently in [27, 29]). Here we attempt to make this relationship clearer and in doing

so argue for the validity of our expression eq. (4.10). Starting with the simplest tree-level

diagram, the NMHV amplitude figure 2, we write the MHV vertex as a graph vertex. We

then follow the procedure outlined in figure 15 (a)-(e), collapsing each group of adjacent

external legs into a single leg, adding a new vertex corresponding to the point at infinity,

to which we then connect all the external lines. In general, this produces a (multi)graph

on the sphere with faces corresponding to momentum regions, which are of course in one-

to-one correspondence with planar graphs. For every planar graph one can construct the

unique geometric dual graph, which is seen in this case to correspond to the simplest non-

crossing partition J1 by removing the external boundary, c.f. more complicated examples in

figure 4. While for more complicated tree diagrams the resulting graphs are more involved

one can always construct the unique dual graph in this fashion. These planar graphs are

always such that each edge ends on two distinct vertices (no pseudographs), and in fact

each face is bounded by exactly three edges. This corresponds to assuming that for each

location in the original MHV diagram where external legs can occur they do. The case

where there are no external legs, for example if i2 = i3 in figure 3, is a degenerate case

which corresponds to two vertices becoming coincident in the dual graph. For example in

figure 16 we show the graph corresponding to the N2MHV diagram, the dual graph, the

degenerate graph for i2 = i3 and its dual.

Furthermore, before identifying the end vertices there are no cycles,12 thus after the

identification every cycle must include the added vertex corresponding to the identified

12By cycle we mean a closed path with no repeated edges or vertices except the starting/ending vertex.
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(a) (b) (c) (d) (e)

Figure 15. Relationship between the MHV vertex graphs, dual graphs and non-crossing partitions

for the NMHV tree amplitude.

(a) (b) (c) (d)

Figure 16. Tree N2MHV graph (a), the dual graph (b), the degenerate N2MHV graph (c) and the

dual of the degenerate graph.

(a) (b) (c)

Figure 17. (a) Cut for a dual tree graph (b) Boundary cut for a dual graph (c) Loop cut for a

dual graph

ends of all external legs. That is to say, the graphs are such that every cycle has at least

one vertex in common. For the dual diagrams this implies that every vertex is connected

to at least three edges and there is one face (in our embedding this is the exterior region)

such that every cut set13 must contain two edges of the boundary of that face e.g. figure 17

(a). In the degenerate graphs vertices can come together, in which case one could have

more than three edges attached to a vertex.

Now we consider MHV diagrams with loops, the simplest example of which, the one

loop MHV diagram, is shown in figure 18. As can be seen even in this simplest case, for

the MHV diagrams we must include faces corresponding to loops which in general can have

13By a cut set we mean the set of edges dual to the edges of a cycle. Removing those edges results in a

partition of the set of vertices, which defines a cut. Alternatively, the cut set is the set of all edges whose

end points are in different partitions of a given cut.

– 27 –



J
H
E
P
0
2
(
2
0
1
1
)
1
1
6

Figure 18. Graph and dual graph for the one-loop MHV diagram.

more than three boundary edges; we thus have two classes of faces. As we do not consider

tadpoles, as they give zero after fermionic integration, those faces corresponding to loops

must have at least two edges each. In fact, graphs where an internal face has only two

edges but shares one of its edges with another loop will also give zero contribution to the

MHV expansion after the fermionic integration. This is the case, for example, in the two

loop MHV diagrams figure 10 (b). Contrary to the tree level graphs, there are now, of

course, completely disjoint cycles.

For the corresponding dual diagrams we thus have two types of vertices, which we

represent with black dots for vertices dual to faces corresponding to external momenta

and white dots for vertices dual to faces corresponding to loop momenta. Black dots must

always have three adjacent edges and white dots at least two edges. In fact, for the purposes

of integrands, white dots must have two edges each, that is they cannot each have only

two edges but share an edge. Every face must have a boundary consisting of at least three

edges. Finally, there is a face (in our representations this will be the exterior face) such

that the cut sets of cuts that result in two partitions both consisting of mixes of white and

black vertices must contain elements of the boundary of this face e.g. figure 17 (b). The

cut sets of cuts which result in partitions one of which contains only white vertices contain

no elements of the boundary of this face e.g. figure 17 (c). These cuts correspond to the

cycles introduced by the loops.

The partitions described earlier can be found by eliminating the boundary of the

preferred, or exterior face. This gives us a one-to-one mapping between MHV diagrams,

their graphs, their duals and the corresponding partitions.
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