231 research outputs found

    Transformative learning as pedagogy for the health professions : a scoping review

    Get PDF
    Context Transformative learning (TL) has been described as learning that challenges established perspectives, leading to new ways of being in the world. As a learning theory it has resonated with educators globally, including those in the health professions. Described as a complex metatheory, TL has evolved over time, eliciting divergent interpretations of the construct. This scoping review provides a comprehensive synthesis of how TL is currently represented in the health professions education literature, including how it influences curricular activities, to inform its future application in the field. Methods Arksey and O'Malley's six‐step framework was adopted to review the period from 2006 to May 2018. A total of 10 bibliographic databases were searched, generating 1532 potential studies. After several rounds of review, first of abstracts and then of full texts, 99 studies were mapped by two independent reviewers onto the internally developed data extraction sheet. Descriptive information about included studies was aggregated. Discursive data were subjected to content analysis. Results A mix of conceptual and empirical research papers, which used a range of qualitative methodologies, were included. Studies from the USA, the UK and Australia were most prevalent. Insights relating to how opportunities for TL were created, how it manifests and influences behaviour, as well as how it is experienced, demonstrated much congruency. Conceptions of TL were seen to be clustered around the work of key theorists. Conclusions The training of health professionals often takes place in unfamiliar settings where students are encouraged to be active participants in providing care. This increases the opportunity for exposure to learning experiences that are potentially transformative, allowing for a pedagogy of uncertainty that acknowledges the complexity of the world we live in and questions what we believe we know about it. TL provides educators in the health professions with a theoretical lens through which they can view such student learning

    A Horizon Scan of research priorities to inform policies aimed at reducing the harm of plastic pollution to biota

    Get PDF
    Plastic pollution in the oceans is a priority environmental issue. The recent increase in research on the topic, coupled with growing public awareness, has catalyzed policymakers around the world to identify and implement solutions that minimize the harm caused by plastic pollution. To aid and coordinate these efforts, we surveyed experts with scientific experience identified through their peer-reviewed publications. We asked experts about the most pressing research questions relating to how biota interact with plastic pollution that in turn can inform policy decisions and research agendas to best contribute to understanding and reducing the harm of plastic pollution to biota. We used a modified Horizon Scan method that first used a subgroup of experts to generate 46 research questions on aquatic biota and plastics, and then conducted an online survey of researchers globally to prioritize questions in terms of their importance to inform policy development. One hundred and fifteen experts from 29 countries ranked research questions in six themes. The questions were ranked by urgency, indicating which research should be addressed immediately, which can be addressed later, and which are of limited relevance to inform action on plastics as an environmental pollutant. We found that questions relating to the following four themes were the most commonly top-ranked research priorities: (i) sources, circulation and distribution of plastics, (ii) type of harm from plastics, (iii) detection of ingested plastics and the associated problems, and (iv) related economies and policy to ingested plastics. While there are many research questions on the topic of impacts of plastic pollution on biota that could be funded and investigated, our results focus collective priorities in terms of research that experts believe will inform effective policy and on-the-ground conservation.© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact

    ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells through Two MicroRNAs in Arabidopsis

    Get PDF
    Stem cells are crucial in morphogenesis in plants and animals. Much is known about the mechanisms that maintain stem cell fates or trigger their terminal differentiation. However, little is known about how developmental time impacts stem cell fates. Using Arabidopsis floral stem cells as a model, we show that stem cells can undergo precise temporal regulation governed by mechanisms that are distinct from, but integrated with, those that specify cell fates. We show that two microRNAs, miR172 and miR165/166, through targeting APETALA2 and type III homeodomain-leucine zipper (HD-Zip) genes, respectively, regulate the temporal program of floral stem cells. In particular, we reveal a role of the type III HD-Zip genes, previously known to specify lateral organ polarity, in stem cell termination. Both reduction in HD-Zip expression by over-expression of miR165/166 and mis-expression of HD-Zip genes by rendering them resistant to miR165/166 lead to prolonged floral stem cell activity, indicating that the expression of HD-Zip genes needs to be precisely controlled to achieve floral stem cell termination. We also show that both the ubiquitously expressed ARGONAUTE1 (AGO1) gene and its homolog AGO10, which exhibits highly restricted spatial expression patterns, are required to maintain the correct temporal program of floral stem cells. We provide evidence that AGO10, like AGO1, associates with miR172 and miR165/166 in vivo and exhibits “slicer” activity in vitro. Despite the common biological functions and similar biochemical activities, AGO1 and AGO10 exert different effects on miR165/166 in vivo. This work establishes a network of microRNAs and transcription factors governing the temporal program of floral stem cells and sheds light on the relationships among different AGO genes, which tend to exist in gene families in multicellular organisms

    Replication Fork Reactivation in a dnaC2 Mutant at Non-Permissive Temperature in Escherichia coli

    Get PDF
    Replicative helicases unwind double-stranded DNA in front of the polymerase and ensure the processivity of DNA synthesis. In Escherichia coli, the helicase loader DnaC as well as factors involved in the formation of the open complex during the initiation of replication and primosomal proteins during the reactivation of arrested replication forks are required to recruit and deposit the replicative helicase onto single-stranded DNA prior to the formation of the replisome. dnaC2 is a thermosensitive allele of the gene specifying the helicase loader; at non-permissive temperature replication cannot initiate, but most ongoing rounds of replication continues through to completion (18% of dnaC2 cells fail to complete replication at non-permissive temperature). An assumption, which may be drawn from this observation, is that only a few replication forks are arrested under normal growth conditions. This assumption, however, is at odds with the severe and deleterious phenotypes associated with a null mutant of priA, the gene encoding a helicase implicated in the reactivation of arrested replication forks. We developed an assay that involves an abrupt inactivation of rounds of synchronized replication in a large population of cells, in order to evaluate the ability of dnaC2 cells to reactivate arrested replication forks at non-permissive temperature. We compared the rate at which arrested replication forks accumulated in dnaC2 priA+ and dnaC2 priA2 cells and observed that this rate was lower in dnaC2 priA+ cells. We conclude that while replication cannot initiate in a dnaC2 mutant at non-permissive temperature, a class of arrested replication forks (PriA-dependent and DnaC-independent) are reactivated within these cells

    MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development

    Get PDF
    The role of microRNAs (miRNAs) during cotton fiber development remains unclear. Here, a total of 54 miRNAs belonging to 39 families were selected to characterize miRNA regulatory mechanism in eight different fiber development stages in upland cotton cv BM-1. Among 54 miRNAs, 18 miRNAs were involved in cotton fiber initiation and eight miRNAs were related to fiber elongation and secondary wall biosynthesis. Additionally, 3,576 protein-coding genes were candidate target genes of these miRNAs, which are potentially involved in cotton fiber development. We also investigated the regulatory network of miRNAs and corresponding targets in fiber initiation and elongation, and secondary wall formation. Our Gene Ontology-based term classification and KEGG-based pathway enrichment analyses showed that the miRNA targets covered 220 biological processes, 67 molecular functions, 45 cellular components, and 10 KEGG pathways. Three of ten KEGG pathways were involved in lignan synthesis, cell elongation, and fatty acid biosynthesis, all of which have important roles in fiber development. Overall, our study shows the potential regulatory roles of miRNAs in cotton fiber development and the importance of miRNAs in regulating different cell types. This is helpful to design miRNA-based biotechnology for improving fiber quality and yield

    The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway

    Get PDF
    In Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth. Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that suppress hws-1 associated phenotypes. We identified shs-2 and shs-3 (suppressor of hws-2 and 3) mutants in which the sepal fusion phenotype of hws-1 was suppressed. shs-2 and shs-3 (renamed hst-23/hws-1 and hst-24/hws-1) carry transition mutations that result in premature terminations in the plant homolog of Exportin-5 HASTY (HST), known to be important in miRNA biogenesis, function and transport. Genetic crosses between hws-1 and mutant lines for genes in the miRNA pathway, also suppress the phenotypes associated with HWS loss of function, corroborating epistatic relations between the miRNA pathway genes and HWS. In agreement with these data, accumulation of miRNA is modified in HWS loss or gain of function mutants. Our data propose HWS as a new player in the miRNA pathway, important for plant growth

    Effects of Aluminum Oxide Nanoparticles on the Growth, Development, and microRNA Expression of Tobacco (Nicotiana tabacum)

    Get PDF
    Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA) are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al2O3 nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum) plants (an important cash crop as well as a model organism) to 0%, 0.1%, 0.5%, and 1% Al2O3 nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al2O3 nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al2O3 nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al2O3 nanoparticles in the environment

    Preventing preterm birth with progesterone: costs and effects of screening low risk women with a singleton pregnancy for short cervical length, the Triple P study

    Get PDF
    Contains fulltext : 97255.pdf (postprint version ) (Open Access)BACKGROUND: Women with a short cervical length in mid-trimester pregnancy have a higher risk of preterm birth and therefore a higher rate of neonatal mortality and morbidity. Progesterone can potentially decrease the number of preterm births and lower neonatal mortality and morbidity. Previous studies showed good results of progesterone in women with either a history of preterm birth or a short cervix. However, it is unknown whether screening for a short cervix and subsequent treatment in mid trimester pregnancy is effective in low risk women. METHODS/DESIGN: We plan a combined screen and treat study among women with a singleton pregnancy without a previous preterm birth. In these women, we will measure cervical length at the standard anomaly scan performed between 18 and 22 weeks. Women with cervical length </= 30 mm at two independent measurements will be randomly allocated to receive either vaginal progesterone tablets or placebo between 22 and 34 weeks. The primary outcome of this trial is adverse neonatal condition, defined as a composite outcome of neonatal mortality and severe morbidity. Secondary outcomes are time to delivery, preterm birth rate before 32, 34 and 37 weeks, days of admission in neonatal intensive care unit, maternal morbidity, maternal admission days for preterm labour and costs. We will assess growth, physical condition and neurodevelopmental outcome of the children at two years of age. DISCUSSION: This study will provide evidence for the usefulness and cost-effectiveness of screening for short cervical length at the 18-22 weeks and subsequent progesterone treatment among low risk women. TRIAL REGISTRATION: Netherlands Trial Register (NTR): NTR207
    corecore