502 research outputs found

    Curvature-direction measures of self-similar sets

    Full text link
    We obtain fractal Lipschitz-Killing curvature-direction measures for a large class of self-similar sets F in R^d. Such measures jointly describe the distribution of normal vectors and localize curvature by analogues of the higher order mean curvatures of differentiable submanifolds. They decouple as independent products of the unit Hausdorff measure on F and a self-similar fibre measure on the sphere, which can be computed by an integral formula. The corresponding local density approach uses an ergodic dynamical system formed by extending the code space shift by a subgroup of the orthogonal group. We then give a remarkably simple proof for the resulting measure version under minimal assumptions.Comment: 17 pages, 2 figures. Update for author's name chang

    The Familial Clustering of Age at Menarche in Extended Twin Families

    Get PDF
    The timing of puberty is complex, possibly involving many genetic factors that may interact with environmental influences. Familial resemblance for age at menarche was studied in a sample of 4,995 female twins, 1,296 sisters, 2,946 mothers and 635 female spouses of male twins. They had indicated their age at menarche as part of a larger longitudinal survey. We assessed assortative mating for age at menarche, gene–environment interaction effects and estimated the heritability of individual differences in pubertal timing. There was significant evidence of gene–environment interaction, accounting for 1.5% of the variance. There was no indication of consistent mate assortment on age at menarche. Individual differences in age at menarche are highly heritable, with additive genetic factors explaining at least 70% of the true variation. An additional 1.5% of the variation can be explained by a genotype–environment interaction effect where environmental factors are more important in individuals genetically predisposed for late menarche

    Regulatory control and the costs and benefits of biochemical noise

    Get PDF
    Experiments in recent years have vividly demonstrated that gene expression can be highly stochastic. How protein concentration fluctuations affect the growth rate of a population of cells, is, however, a wide open question. We present a mathematical model that makes it possible to quantify the effect of protein concentration fluctuations on the growth rate of a population of genetically identical cells. The model predicts that the population's growth rate depends on how the growth rate of a single cell varies with protein concentration, the variance of the protein concentration fluctuations, and the correlation time of these fluctuations. The model also predicts that when the average concentration of a protein is close to the value that maximizes the growth rate, fluctuations in its concentration always reduce the growth rate. However, when the average protein concentration deviates sufficiently from the optimal level, fluctuations can enhance the growth rate of the population, even when the growth rate of a cell depends linearly on the protein concentration. The model also shows that the ensemble or population average of a quantity, such as the average protein expression level or its variance, is in general not equal to its time average as obtained from tracing a single cell and its descendants. We apply our model to perform a cost-benefit analysis of gene regulatory control. Our analysis predicts that the optimal expression level of a gene regulatory protein is determined by the trade-off between the cost of synthesizing the regulatory protein and the benefit of minimizing the fluctuations in the expression of its target gene. We discuss possible experiments that could test our predictions.Comment: Revised manuscript;35 pages, 4 figures, REVTeX4; to appear in PLoS Computational Biolog

    Sexual selection protects against extinction

    Get PDF
    Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorised that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males, and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which depends on mutation load, then sexually selected filtering through ‘genic capture’ could offset the costs of sex because it provides genetic benefits to populations. Here, we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for ~7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress

    Heterosis as Investigated in Terms of Polyploidy and Genetic Diversity Using Designed Brassica juncea Amphiploid and Its Progenitor Diploid Species

    Get PDF
    Fixed heterosis resulting from favorable interactions between the genes on their homoeologous genomes in an allopolyploid is considered analogous to classical heterosis accruing from interactions between homologous chromosomes in heterozygous plants of a diploid species. It has been hypothesized that fixed heterosis may be one of the causes of low classical heterosis in allopolyploids. We used Indian mustard (Brassica juncea, 2n = 36; AABB) as a model system to analyze this hypothesis due to ease of its resynthesis from its diploid progenitors, B. rapa (2n = 20; AA) and B. nigra (2n = 16; BB). Both forms of heterosis were investigated in terms of ploidy level, gene action and genetic diversity. To facilitate this, eleven B. juncea genotypes were resynthesized by hybridizing ten near inbred lines of B. rapa and nine of B. nigra. Three half diallel combinations involving resynthesized B. juncea (11×11) and the corresponding progenitor genotypes of B. rapa (10×10) and B. nigra (9×9) were evaluated. Genetic diversity was estimated based on DNA polymorphism generated by SSR primers. Heterosis and genetic diversity in parental diploid species appeared not to predict heterosis and genetic diversity at alloploid level. There was also no association between combining ability, genetic diversity and heterosis across ploidy. Though a large proportion (0.47) of combinations showed positive values, the average fixed heterosis was low for seed yield but high for biomass yield. The genetic diversity was a significant contributor to fixed heterosis for biomass yield, due possibly to adaptive advantage it may confer on de novo alloploids during evolution. Good general/specific combiners at diploid level did not necessarily produce good general/specific combiners at amphiploid level. It was also concluded that polyploidy impacts classical heterosis indirectly due to the negative association between fixed heterosis and classical heterosis

    Genetic Evaluation of Hip Score in UK Labrador Retrievers

    Get PDF
    Hip dysplasia is an important and complex genetic disease in dogs with both genetic and environmental influences. Since the osteoarthritis that develops is irreversible the only way to improve welfare, through reducing the prevalence, is through genetic selection. This study aimed to evaluate the progress of selection against hip dysplasia, to quantify potential improvements in the response to selection via use of genetic information and increases in selection intensity, and to prepare for public provision of estimated breeding values (EBV) for hip dysplasia in the UK. Data consisted of 25,243 single records of hip scores of Labrador Retrievers between one and four years old, from radiographs evaluated between 2000 and 2007 as part of the British Veterinary Association (BVA) hip score scheme. A natural logarithm transformation was applied to improve normality and linear mixed models were evaluated using ASREML. Genetic correlations between left and right scores, and total hip scores at one, two and three years of age were found to be close to one, endorsing analysis of total hip score in dogs aged one to three as an appropriate approach. A heritability of 0.35±0.016 and small but significant litter effect (0.07±0.009) were estimated. The observed trends in both mean hip score and mean EBV over year of birth indicate that a small genetic improvement has been taking place, approximately equivalent to avoiding those dogs with the worst 15% of scores. Deterministic analysis supported by simulations showed that a 19% greater response could be achieved using EBV compared to phenotype through increases in accuracy alone. This study establishes that consistent but slow genetic improvement in the hip score of UK Labrador Retrievers has been achieved over the previous decade, and demonstrates that progress may be easily enhanced through the use of EBVs and more intense selection

    Genetic Factors Influence the Clustering of Depression among Individuals with Lower Socioeconomic Status

    Get PDF
    Objective: To investigate the extent to which shared genetic factors can explain the clustering of depression among individuals with lower socioeconomic status, and to examine if neuroticism or intelligence are involved in these pathways. Methods: In total 2,383 participants (1,028 men and 1,355 women) of the Erasmus Rucphen Family Study were assessed with the Center for Epidemiologic Studies Depression Scale (CES-D) and the Hospital Anxiety and Depression Scale (HADSD). Socioeconomic status was assessed as the highest level of education obtained. The role of shared genetic factors was quantified by estimating genetic correlations (rG) between symptoms of depression and education level, with and without adjustment for premorbid intelligence and neuroticism scores. Results: Higher level of education was associated with lower depression scores (partial correlation coefficient 20.09 for CESD and 20.17 for HADS-D). Significant genetic correlations were found between education and bo

    Biophysical and electrochemical studies of protein-nucleic acid interactions

    Get PDF
    This review is devoted to biophysical and electrochemical methods used for studying protein-nucleic acid (NA) interactions. The importance of NA structure and protein-NA recognition for essential cellular processes, such as replication or transcription, is discussed to provide background for description of a range of biophysical chemistry methods that are applied to study a wide scope of protein-DNA and protein-RNA complexes. These techniques employ different detection principles with specific advantages and limitations and are often combined as mutually complementary approaches to provide a complete description of the interactions. Electrochemical methods have proven to be of great utility in such studies because they provide sensitive measurements and can be combined with other approaches that facilitate the protein-NA interactions. Recent applications of electrochemical methods in studies of protein-NA interactions are discussed in detail

    Elevated tumour interleukin-1β is associated with systemic inflammation: a marker of reduced survival in gastro-oesophageal cancer

    Get PDF
    Systemic inflammation is associated with adverse prognosis cancer but its aetiology remains unclear. We investigated the expression of proinflammatory cytokines within normal mucosa from healthy controls and tumour tissue in cancer patients and related these levels with markers of systemic inflammation and with the presence of a tumour inflammatory infiltrate. Tissue was collected from 56 patients with gastro-oesophageal cancer and from 12 healthy controls. Tissue cytokine mRNA concentrations were measured by real-time PCR and tissue protein concentrations by cytometric bead array. The degree of chronic inflammatory cell infiltrate was recorded. Serum cytokine and acute phase protein concentrations (including C-reactive protein (CRP)) were measured by enzyme-linked immunosorbent assay. Proinflammatory cytokines were significantly overexpressed (interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor-α) both at mRNA and protein levels in the cancer specimens compared with mucosa from controls. Interleukin-1β was expressed in greatest (10–100-fold) concentration and protein levels correlated significantly with systemic inflammation (CRP) (P=0.05, r=0.31). A chronic inflammatory infiltrate was observed in 75% of the cancer specimens and was associated with systemic inflammation (CRP: P=0.01). However, the presence of chronic inflammation per se was not associated with altered cytokine expression within the tumour. Both a chronic inflammatory infiltrate and systemic inflammation (CRP) were associated with reduced survival (P=0.05 and P=0.03, respectively). Tumour chronic inflammatory infiltrate and tumour tissue IL-1β overexpression are potential independent factors influencing systemic inflammation in oesophagogastric cancer patients
    corecore