75 research outputs found

    The distribution of mycosporine-like amino acids in phytoplankton across a Southern Ocean transect

    Get PDF
    Interactions between phytoplankton and ultraviolet radiation (UVR: 280 – 400 nm) are undergoing changes dictated by variability in ocean temperature, the depth of mixed layers, nutrient availability, and the thickness of the ozone layer. There are a variety of mechanisms for phytoplankton to cope with UVR stress, one of the most prevalent being the presence of mycosporine-like amino acids (MAAs). Despite the importance of these molecules to phytoplankton fitness under UVR stress, knowledge of the diversity and distribution of these molecules in the world’s oceans is relatively limited. Here, the composition and distribution of MAAs in phytoplankton were examined in a transect across the Southern Ocean, crossing multiple fronts, from eastern New Zealand to the West Antarctic Peninsula in March and April of 2018. The highest concentration of MAAs (> 0.2 mg/L) was found between 50 and 60°S, as well as along a longitudinal gradient between 137.47 and 144.78°W. A strong correlation was found between a model of the preceding month’s UVR dosage experienced in the mixed layer and the ratio of MAAs to chlorophyll-a across the transect, indicating a relationship between the integrated history of light exposure and phytoplankton physiology. Haptophytes accounted for the majority of biomass north of the polar front (PF) and were strongly correlated with a diversity of MAAs. South of the PF a transition to a community dominated by diatoms was observed, with community composition changes strongly correlated to porphyra-334 concentrations. The data presented here provide a baseline for MAA abundance and association with specific phytoplankton taxa across the Southern Ocean amid a changing climate

    Photosynthetic growth despite a broken Q-cycle

    Get PDF
    Central in respiration or photosynthesis, the cytochrome bc1 and b6f complexes are regarded as functionally similar quinol oxidoreductases. They both catalyse a redox loop, the Q-cycle, which couples electron and proton transfer. This loop involves a bifurcated electron transfer step considered as being mechanistically mandatory, making the Q-cycle indispensable for growth. Attempts to falsify this paradigm in the case of cytochrome bc1 have failed. The rapid proteolytic degradation of b6f complexes bearing mutations aimed at hindering the Q-cycle has precluded so far the experimental assessment of this model in the photosynthetic chain. Here we combine mutations in Chlamydomonas that inactivate the redox loop but preserve high accumulation levels of b6f complexes. The oxidoreductase activity of these crippled complexes is sufficient to sustain photosynthetic growth, which demonstrates that the Q-cycle is dispensable for oxygenic photosynthesis

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    Viability Conditions for a Compartmentalized Protometabolic System: A Semi-Empirical Approach

    Get PDF
    In this work we attempt to find out the extent to which realistic prebiotic compartments, such as fatty acid vesicles, would constrain the chemical network dynamics that could have sustained a minimal form of metabolism. We combine experimental and simulation results to establish the conditions under which a reaction network with a catalytically closed organization (more specifically, an ()-system) would overcome the potential problem of self-suffocation that arises from the limited accessibility of nutrients to its internal reaction domain. The relationship between the permeability of the membrane, the lifetime of the key catalysts and their efficiency (reaction rate enhancement) turns out to be critical. In particular, we show how permeability values constrain the characteristic time scale of the bounded protometabolic processes. From this concrete and illustrative example we finally extend the discussion to a wider evolutionary context

    Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6 Å resolution.

    Get PDF
    The cytochrome b6 f (cytb6 f ) complex has a central role in oxygenic photosynthesis, linking electron transfer between photosystems I and II and converting solar energy into a transmembrane proton gradient for ATP synthesis1-3. Electron transfer within cytb6 f occurs via the quinol (Q) cycle, which catalyses the oxidation of plastoquinol (PQH2) and the reduction of both plastocyanin (PC) and plastoquinone (PQ) at two separate sites via electron bifurcation2. In higher plants, cytb6 f also acts as a redox-sensing hub, pivotal to the regulation of light harvesting and cyclic electron transfer that protect against metabolic and environmental stresses3. Here we present a 3.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the dimeric cytb6 f complex from spinach, which reveals the structural basis for operation of the Q cycle and its redox-sensing function. The complex contains up to three natively bound PQ molecules. The first, PQ1, is located in one cytb6 f monomer near the PQ oxidation site (Qp) adjacent to haem bp and chlorophyll a. Two conformations of the chlorophyll a phytyl tail were resolved, one that prevents access to the Qp site and another that permits it, supporting a gating function for the chlorophyll a involved in redox sensing. PQ2 straddles the intermonomer cavity, partially obstructing the PQ reduction site (Qn) on the PQ1 side and committing the electron transfer network to turnover at the occupied Qn site in the neighbouring monomer. A conformational switch involving the haem cn propionate promotes two-electron, two-proton reduction at the Qn site and avoids formation of the reactive intermediate semiquinone. The location of a tentatively assigned third PQ molecule is consistent with a transition between the Qp and Qn sites in opposite monomers during the Q cycle. The spinach cytb6 f structure therefore provides new insights into how the complex fulfils its catalytic and regulatory roles in photosynthesis

    Promotion of protocell self-assembly from mixed amphiphiles at the origin of life

    Get PDF
    Vesicles formed from single-chain amphiphiles (SCAs) such as fatty acids probably played an important role in the origin of life. A major criticism of the hypothesis that life arose in an early ocean hydrothermal environment is that hot temperatures, large pH gradients, high salinity and abundant divalent cations should preclude vesicle formation. However, these arguments are based on model vesicles using 1–3 SCAs, even though Fischer–Tropsch-type synthesis under hydrothermal conditions produces a wide array of fatty acids and 1-alkanols, including abundant C10–C15 compounds. Here, we show that mixtures of these C10–C15 SCAs form vesicles in aqueous solutions between pH ~6.5 and >12 at modern seawater concentrations of NaCl, Mg2+ and Ca2+. Adding C10 isoprenoids improves vesicle stability even further. Vesicles form most readily at temperatures of ~70 °C and require salinity and strongly alkaline conditions to self-assemble. Thus, alkaline hydrothermal conditions not only permit protocell formation at the origin of life but actively favour it

    The Florey Adelaide Male Ageing Study (FAMAS): Design, procedures & participants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Florey Adelaide Male Ageing Study (FAMAS) examines the reproductive, physical and psychological health, and health service utilisation of the ageing male in Australia. We describe the rationale for the study, the methods used participant response rates, representativeness and attrition to date.</p> <p>Methods</p> <p>FAMAS is a longitudinal study involving approximately 1200 randomly selected men, aged 35–80 years and living in the north – west regions of Adelaide. Respondents were excluded at screening if they were considered incapable of participating because of immobility, language, or an inability to undertake the study procedures. Following a telephone call to randomly selected households, eligible participants were invited to attend a baseline clinic measuring a variety of biomedical and socio-demographic factors. Beginning in 2002, these clinics are scheduled to reoccur every five years. Follow-up questionnaires are completed annually. Participants are also invited to participate in sub-studies with selected collaborators.</p> <p>Results</p> <p>Of those eligible to participate, 45.1% ultimately attended a clinic. Non-responders were more likely to live alone, be current smokers, have a higheevalence of self-reported diabetes and stroke, and lower levels of hypercholesterolemia. Comparisons with the Census 2001 data showed that participants matched the population for most key demographics, although younger groups and never married men were under-represented and elderly participants were over-represented. To date, there has been an annual loss to follow-up of just over 1%.</p> <p>Conclusion</p> <p>FAMAS allows a detailed investigation into the effects of bio-psychosocial and behavioural factors on the health and ageing of a largely representative group of Australian men.</p

    How patients understand depression associated with chronic physical disease - A systematic review

    Get PDF
    Background: Clinicians are encouraged to screen people with chronic physical illness for depression. Screening alone may not improve outcomes, especially if the process is incompatible with patient beliefs. The aim of this research is to understand peoples beliefs about depression, particularly in the presence of chronic physical disease. Methods: A mixed method systematic review involving a thematic analysis of qualitative studies and quantitative studies of beliefs held by people with current depressive symptoms. MEDLINE, EMBASE, PSYCHINFO, CINAHL, BIOSIS, Web of Science, The Cochrane Library, UKCRN portfolio, National Research Register Archive, Clinicaltrials.gov and OpenSIGLE were searched from database inception to 31st December 2010. A narrative synthesis of qualitative and quantitative data, based initially upon illness representations and extended to include other themes not compatible with that framework. Results: A range of clinically relevant beliefs was identified from 65 studies including the difficulty in labeling depression, complex causal factors instead of the biological model, the roles of different treatments and negative views about the consequences of depression. We found other important themes less related to ideas about illness: the existence of a self-sustaining depression spiral; depression as an existential state; the ambiguous status of suicidal thinking; and the role of stigma and blame in depression. Conclusions: Approaches to detection of depression in physical illness need to be receptive to the range of beliefs held by patients. Patient beliefs have implications for engagement with depression screening

    Lichen response to ammonia deposition defines the footprint of a penguin rookery

    Get PDF
    Ammonia volatilized from penguin rookeries is a major nitrogen source in Antarctic coastal terrestrial ecosystems. However, the spatial extent of ammonia dispersion from rookeries and its impacts have not been quantified previously. We measured ammonia concentration in air and lichen ecophysiological response variables proximate to an Adèlie penguin rookery at Cape Hallett, northern Victoria Land. Ammonia emitted from the rookery was 15N-enriched (δ15N value +6.9) and concentrations in air ranged from 36–75 µg m−3 at the rookery centre to 0.05 µg m−3 at a distance of 15.3 km. δ15N values and rates of phosphomonoesterase (PME) activity in the lichens Usnea sphacelata and Umbilicaria decussata were strongly negatively related to distance from the rookery and PME activity was positively related to thallus N:P mass ratio. In contrast, the lichen Xanthomendoza borealis, which is largely restricted to within an area 0.5 km from the rookery perimeter, had high N, P and 15N concentrations but low PME activity suggesting that nutrient scavenging capacity is suppressed in highly eutrophicated sites. An ammonia dispersion model indicates that ammonia concentrations sufficient to significantly elevate PME activity and δ15N values (≥0.1 µg NH3 m−3) occurred over c. 40–300 km2 surrounding the rookery suggesting that penguin rookeries potentially can generate large spatial impact zones. In a general linear model NH3 concentration and lichen species identity were found to account for 72 % of variation in the putative proportion of lichen thallus N originating from penguin derived NH3. The results provide evidence of large scale impact of N transfer from a marine to an N-limited terrestrial ecosystem
    • …
    corecore