231 research outputs found
TRIPPy: Trailed Image Photometry in Python
Photometry of moving sources typically suffers from reduced signal-to-noise
(SNR) or flux measurements biased to incorrect low values through the use of
circular apertures. To address this issue we present the software package,
TRIPPy: TRailed Image Photometry in Python. TRIPPy introduces the pill
aperture, which is the natural extension of the circular aperture appropriate
for linearly trailed sources. The pill shape is a rectangle with two
semicircular end-caps, and is described by three parameters, the trail length
and angle, and the radius. The TRIPPy software package also includes a new
technique to generate accurate model point-spread functions (PSF) and trailed
point-spread functions (TSF) from stationary background sources in sidereally
tracked images. The TSF is merely the convolution of the model PSF, which
consists of a moffat profile, and super sampled lookup table. From the TSF,
accurate pill aperture corrections can be estimated as a function of pill
radius with a accuracy of 10 millimags for highly trailed sources. Analogous to
the use of small circular apertures and associated aperture corrections, small
radius pill apertures can be used to preserve signal-to-noise of low flux
sources, with appropriate aperture correction applied to provide an accurate,
unbiased flux measurement at all SNR.Comment: 8 Figures, 11 Pages, Accepted to the Astronomical Journa
Duodenal enteroglucagonoma revealed by differential comparison of serum and tissue glucagon reactivity with Siemens' Double Glucagon Antibody and DakoCytomation's Polyclonal Rabbit Anti-Human Glucagon: a case report
<p>Abstract</p> <p>Introduction</p> <p>This case report demonstrates that the differential immunohistochemical reactivities of Siemens' <it>Double Antibody Glucagon </it>compared to DakoCytomation's <it>Polyclonal Rabbit Anti-Human Glucagon </it>allow for pathologic distinction of enteral versus pancreatic glucagonoma.</p> <p>Case presentation</p> <p>A 64-year-old Caucasian man was diagnosed with a duodenal enteroglucagonoma following presentation with obstructive jaundice. He had a low serum glucagon level using Siemens' <it>Double Antibody Glucagon</it>, a clinical syndrome consistent with glucagon hypersecretion. A periampullary mass biopsy proved to be a neuroendocrine tumor, with positive immunohistochemical reactivity to DakoCytomation's <it>Polyclonal Rabbit Anti-Human Glucagon</it>.</p> <p>Conclusions</p> <p>Differential comparison of the immunohistochemical reactivities of Siemens' <it>Double Antibody Glucagon </it>and DakoCytomation's <it>Polyclonal Rabbit Anti-Human Glucagon </it>discerns enteroglucagon from pancreatic glucagon.</p
Unraveling the Phylogenetic Relationships of the Eccoptochilinae, an Enigmatic Array of Ordovician Cheirurid Trilobites
The Cheiruridae are a diverse group of trilobites and several subfamilies within the clade have been the focus of recent phylogenetic studies. This paper focuses on the relationships of one of those subfamilies, the Ordovician Eccoptochilinae. We analyze sixteen species from six genera within the traditionally defined group, using the pilekiid Anacheirurus frederici as an outgroup. To assess the monophyly of the Eccoptochilinae seven sphaerexochine species, Kawina arnoldi, Sphaerexochus arenosus, S. atacius, S. latifrons, S. mirus, S. parvus, and S. scabridus were included in the analysis as well. The results of this analysis show that the genus Eccoptochile represents a paraphyletic grade and species traditionally assigned to Parasphaerexochus and Skelipyx plot within Pseudosphaerexochus. Also, representative species of Sphaerexochinae plot within the traditionally defined Eccoptochilinae, suggesting Eccoptochilinae itself is paraphyletic. To resolve this, we propose all species of Pseudosphaerexochus be placed within Sphaerexochinae and Eccoptochilinae be restricted to a monotypic Eccoptochile clavigera.This research was supported by NSF DEB-0716162
Dynamic Activation and Repression of the Plasmodium falciparum rif Gene Family and Their Relation to Chromatin Modification
The regulation of variant gene expression in Plasmodium falciparum is still only partially understood. Regulation of var genes, the most studied gene family involved in antigenic variation, is orchestrated by a dynamic pattern of inherited chromatin states. Although recent evidence pointed to epigenetic regulation of transcribed and repressed rif loci, little is known about specific on/off associated histone modifications of individual rif genes. To investigate the chromatin marks for transcribed and repressed rif loci, we cultivated parasites and evaluated the transcriptional status of chosen rif targets by qRT-PCR and performed ChIP assays using H3K9ac and H3K9me3 antibodies. We then monitored changes in the epigenetic patterns in parasites after several reinvasions and also evaluated the “poised” mark in trophozoites and schizonts of the same erythrocytic cycle by ChIP using H3K4me2 specific antibodies. Our results show that H3K9 is acetylated in transcribed rif loci and trimethylated or even unmodified in repressed rif loci. These transcriptional and epigenetic states are inherited after several reinvasions. The poised modification H3K4me2 showed a tendency to be more present in loci in trophozoites that upon progression to schizonts strongly transcribe the respective locus. However, this effect was not consistently observed for all monitored loci. While our data show important similarities to var transcription-associated chromatin modifications, the observed swiftly occurring modifications at rif loci and the absence of H3K9 modification point to a different dynamic of recruitment of chromatin modifying enzymes
'A good fit?' Bringing the Sociology of Footwear to the Clinical Encounter in Podiatry Services : A Narrative Review
Background: This narrative review explores the ways in which drawing on theories and methods used in sociological work on footwear and identity can contribute to healthcare research with podiatrists and their patients, highlighting recent research in this field, implications for practice and potential areas for future development. Traditionally, research within Podiatry Services has tended to adopt a quantitative, positivist focus, developing separately from a growing body of sociological work exploring the importance of shoes in constructing identity and self-image. Bringing qualitative research drawing on sociological theory and methods to the clinical encounter has real potential to increase our understanding of patient values, motivations and – crucially – any barriers to adopting ‘healthier’ footwear that they may encounter. Such work can help practitioners to understand why patients may resist making changes to their footwear practices, and help us to devise new ways for practitioners to explore and ultimately break down individual barriers to change (including their own preconceptions as practitioners). This, in turn, may lead to long-term, sustainable changes to footwear practices and improvements in foot health for those with complex health conditions and the wider population. Conclusion: A recognition of the complex links between shoes and identity is opening up space for discussion of patient resistance to footwear changes, and paving the way for future research in this field beyond the temporary ‘moment’ of the clinical encounter
Trypanosoma brucei Glycogen Synthase Kinase-3, A Target for Anti-Trypanosomal Drug Development: A Public-Private Partnership to Identify Novel Leads
Over 60 million people in sub-Saharan Africa are at risk of infection with the parasite Trypanosoma brucei which causes Human African Trypanosomiasis (HAT), also known as sleeping sickness. The disease results in systemic and neurological disability to its victims. At present, only four drugs are available for treatment of HAT. However, these drugs are expensive, limited in efficacy and are severely toxic, hence the need to develop new therapies. Previously, the short TbruGSK-3 short has been validated as a potential target for developing new drugs against HAT. Because this enzyme has also been pursued as a drug target for other diseases, several inhibitors are available for screening against the parasite enzyme. Here we present the results of screening over 16,000 inhibitors of human GSK-3β (HsGSK-3) from the Pfizer compound collection against TbruGSK-3 short. The resulting active compounds were tested for selectivity versus HsGSK-3β and a panel of human kinases, as well as their ability to inhibit proliferation of the parasite in vitro. We have identified attractive compounds that now form potential starting points for drug discovery against HAT. This is an example of how a tripartite partnership involving pharmaceutical industries, academic institutions and non-government organisations such as WHO TDR, can stimulate research for neglected diseases
Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition
In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex—the W and Y chromosomes1, 2, 3, 4, 5. By contrast, the sex chromosomes found in both sexes—the Z and X chromosomes—are assumed to have diverged little from their autosomal progenitors2. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.National Science Foundation (U.S.)Howard Hughes Medical Institut
In silico design of novel probes for the atypical opioid receptor MRGPRX2
The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch. Despite putative peptide and small molecule MRGPRX2 agonists, selective nanomolar potency probes have not yet been reported. To identify a MRGPRX2 probe, we first screened 5,695 small molecules and found many opioid compounds activated MRGPRX2, including (−)- and (+)-morphine, hydrocodone, sinomenine, dextromethorphan and the prodynorphin-derived peptides, dynorphin A, dynorphin B, and α- and β-neoendorphin. We used these to select for mutagenesis-validated homology models and docked almost 4 million small molecules. From this docking, we predicted ZINC-3573, which represents a potent MRGPRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases, and an essentially inactive enantiomer. ZINC-3573 activates endogenous MRGPRX2 in a human mast cell line inducing degranulation and calcium release. MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573
Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato
Reproductive development of higher plants comprises successive events of organ differentiation and growth which finally lead to the formation of a mature fruit. However, most of the genetic and molecular mechanisms which coordinate such developmental events are yet to be identified and characterized. Arlequin (Alq), a semi-dominant T-DNA tomato mutant showed developmental changes affecting flower and fruit ripening. Sepals were converted into fleshy organs which ripened as normal fruit organs and fruits displayed altered ripening features. Molecular characterization of the tagged gene demonstrated that it corresponded to the previously reported TOMATO AGAMOUS-LIKE 1 (TAGL1) gene, the tomato ortholog of SHATTERPROOF MADS-box genes of Arabidopsis thaliana, and that the Alq mutation promoted a gain-of-function phenotype caused by the ectopic expression of TAGL1. Ectopic overexpression of TAGL1 resulted in homeotic alterations affecting floral organ identity that were similar to but stronger than those observed in Alq mutant plants. Interestingly, TAGL1 RNAi plants yielded tomato fruits which were unable to ripen. They displayed a yellow-orange color and stiffness appearance which are in accordance with reduced lycopene and ethylene levels, respectively. Moreover, pericarp cells of TAGL1 RNAi fruits showed altered cellular and structural properties which correlated to both decreased expression of genes regulating cell division and lignin biosynthesis. Over-expression of TAGL1 is able to rescue the non-ripening phenotype of rin and nor mutants, which is mediated by the transcriptional activation of several ripening genes. Our results demonstrated that TAGL1 participates in the genetic control of flower and fruit development of tomato plants. Furthermore, gene silencing and over-expression experiments demonstrated that the fruit ripening process requires the regulatory activity of TAGL1. Therefore, TAGL1 could act as a linking factor connecting successive stages of reproductive development, from flower development to fruit maturation, allowing this complex process to be carried out successfully
Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials
We describe the small-scale, laboratory-based, production and quality control of a cocktail, consisting of exclusively lytic bacteriophages, designed for the treatment of Pseudomonas aeruginosa and Staphylococcus aureus infections in burn wound patients. Based on succesive selection rounds three bacteriophages were retained from an initial pool of 82 P. aeruginosa and 8 S. aureus bacteriophages, specific for prevalent P. aeruginosa and S. aureus strains in the Burn Centre of the Queen Astrid Military Hospital in Brussels, Belgium. This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin. Quality control included Stability (shelf life), determination of pyrogenicity, sterility and cytotoxicity, confirmation of the absence of temperate bacteriophages and transmission electron microscopy-based confirmation of the presence of the expected virion morphologic particles as well as of their specific interaction with the target bacteria. Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, φKMV and phage G1. The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee
- …