564 research outputs found

    Developmental disturbances associated with agenesis of the permanent maxillary lateral incisor

    Get PDF
    The aim of this study was to characterise the intra and extra-oral phenotype associated with agenesis of the permanent maxillary lateral incisor. We compared three groups: (1) subjects with agenesis of one or both permanent maxillary lateral incisors (n=80); (2) first and second degree relatives of group 1 with no agenesis of the permanent maxillary lateral incisor and (3) subjects with no agenesis of the maxillary lateral incisor or family history of it (n=49). For each of the 201 subjects detailed clinical information was reviewed and panoramic radiographs were analysed. Considering only the sample with unilateral agenesis, microdontia of the contralateral permanent maxillary lateral incisor was significantly more frequent in group 1 (82.4%) than in group 2 (25%) and the control group (2%). This supports the theory that microdontia is a variable expression of the same developmental disturbance that causes tooth agenesis. The absence of third molars occurred more often in group 1 (36.2%) than in groups 2 and 3 (18.6% and 18.9% respectively), confirming that agenesis of third molars was markedly associated with the agenesis of the permanent maxillary lateral incisor. Agenesis of teeth other than third molars was not significantly different among subjects with agenesis of the permanent maxillary lateral incisor and their relatives. The frequencies of supernumerary teeth, permanent maxillary canine impaction, general health condition and minor anomalies were not significantly different between the three groups

    Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests

    Get PDF
    The effect of management related factors on species richness of epiphytic bryophytes and lichens was studied in managed deciduous-coniferous mixed forests in Western-Hungary. At the stand level, the potential explanatory variables were tree species composition, stand structure, microclimate and light conditions, landscape and historical variables; while at tree level host tree species, tree size and light were studied. Species richness of the two epiphyte groups was positively correlated. Both for lichen and bryophyte plot level richness, the composition and diversity of tree species and the abundance of shrub layer were the most influential positive factors. Besides, for bryophytes the presence of large trees, while for lichens amount and heterogeneity of light were important. Tree level richness was mainly determined by host tree species for both groups. For bryophytes oaks, while for lichens oaks and hornbeam turned out the most favourable hosts. Tree size generally increased tree level species richness, except on pine for bryophytes and on hornbeam for lichens. The key variables for epiphytic diversity of the region were directly influenced by recent forest management; historical and landscape variables were not influential. Forest management oriented to the conservation of epiphyte s should focus on: (i) the maintenance of tree species diversity in mixed stands; (ii) increment the proportion of deciduous trees (mainly oaks); (iii) conserving large trees within the stands; (iv) providing the presence of shrub and regeneration layer; (v) creating heterogeneous light conditions. For these purposes tree selection and selective cutting management seem more appropriate than shelterwood system

    Development of an In Vitro Compartmentalization Screen for High-Throughput Directed Evolution of [FeFe] Hydrogenases

    Get PDF
    BACKGROUND: [FeFe] hydrogenase enzymes catalyze the formation and dissociation of molecular hydrogen with the help of a complex prosthetic group composed of common elements. The development of energy conversion technologies based on these renewable catalysts has been hindered by their extreme oxygen sensitivity. Attempts to improve the enzymes by directed evolution have failed for want of a screening platform capable of throughputs high enough to adequately sample heavily mutated DNA libraries. In vitro compartmentalization (IVC) is a powerful method capable of screening for multiple-turnover enzymatic activity at very high throughputs. Recent advances have allowed [FeFe] hydrogenases to be expressed and activated in the cell-free protein synthesis reactions on which IVC is based; however, IVC is a demanding technique with which many enzymes have proven incompatible. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an extremely high-throughput IVC screen for oxygen-tolerant [FeFe] hydrogenases. We demonstrate that the [FeFe] hydrogenase CpI can be expressed and activated within emulsion droplets, and identify a fluorogenic substrate that links activity after oxygen exposure to the generation of a fluorescent signal. We present a screening protocol in which attachment of mutant genes and the proteins they encode to the surfaces of microbeads is followed by three separate emulsion steps for amplification, expression, and evaluation of hydrogenase mutants. We show that beads displaying active hydrogenase can be isolated by fluorescence-activated cell-sorting, and we use the method to enrich such beads from a mock library. CONCLUSIONS/SIGNIFICANCE: [FeFe] hydrogenases are the most complex enzymes to be produced by cell-free protein synthesis, and the most challenging targets to which IVC has yet been applied. The technique described here is an enabling step towards the development of biocatalysts for a biological hydrogen economy

    Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming

    Get PDF
    Marine encrusting communities play vital roles in benthic ecosystems and have major economic implications with regards to biofouling. However, their ability to persist under projected warming scenarios remains poorly understood and is difficult to study under realistic conditions. Here, using heated settlement panel technologies, we show that after 18 months Antarctic encrusting communities do not acclimate to either +1 °C or +2 °C above ambient temperatures. There is significant up-regulation of the cellular stress response in warmed animals, their upper lethal temperatures decline with increasing ambient temperature and population genetic analyses show little evidence of differential survival of genotypes with treatment. By contrast, biofilm bacterial communities show no significant differences in community structure with temperature. Thus, metazoan and bacterial responses differ dramatically, suggesting that ecosystem responses to future climate change are likely to be far more complex than previously anticipated

    Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase

    Get PDF
    The peptides angiotensin IV and LVV-hemorphin 7 were found to enhance memory in a number of memory tasks and reverse the performance deficits in animals with experimentally induced memory loss. These peptides bound specifically to the enzyme insulin-regulated aminopeptidase (IRAP), which is proposed to be the site in the brain that mediates the memory effects of these peptides. However, the mechanism of action is still unknown but may involve inhibition of the aminopeptidase activity of IRAP, since both angiotensin IV and LVV-hemorphin 7 are competitive inhibitors of the enzyme. IRAP also has another functional domain that is thought to regulate the trafficking of the insulin-responsive glucose transporter GLUT4, thereby influencing glucose uptake into cells. Although the exact mechanism by which the peptides enhance memory is yet to be elucidated, IRAP still represents a promising target for the development of a new class of cognitive enhancing agents

    Robust Antigen Specific Th17 T Cell Response to Group A Streptococcus Is Dependent on IL-6 and Intranasal Route of Infection

    Get PDF
    Group A streptococcus (GAS, Streptococcus pyogenes) is the cause of a variety of clinical conditions, ranging from pharyngitis to autoimmune disease. Peptide-major histocompatibility complex class II (pMHCII) tetramers have recently emerged as a highly sensitive means to quantify pMHCII-specific CD4+ helper T cells and evaluate their contribution to both protective immunity and autoimmune complications induced by specific bacterial pathogens. In lieu of identifying an immunodominant peptide expressed by GAS, a surrogate peptide (2W) was fused to the highly expressed M1 protein on the surface of GAS to allow in-depth analysis of the CD4+ helper T cell response in C57BL/6 mice that express the I-Ab MHCII molecule. Following intranasal inoculation with GAS-2W, antigen-experienced 2W:I-Ab-specific CD4+ T cells were identified in the nasal-associated lymphoid tissue (NALT) that produced IL-17A or IL-17A and IFN-γ if infection was recurrent. The dominant Th17 response was also dependent on the intranasal route of inoculation; intravenous or subcutaneous inoculations produced primarily IFN-γ+ 2W:I-Ab+ CD4+ T cells. The acquisition of IL-17A production by 2W:I-Ab-specific T cells and the capacity of mice to survive infection depended on the innate cytokine IL-6. IL-6-deficient mice that survived infection became long-term carriers despite the presence of abundant IFN-γ-producing 2W:I-Ab-specific CD4+ T cells. Our results suggest that an imbalance between IL-17- and IFN-γ-producing CD4+ T cells could contribute to GAS carriage in humans
    corecore