42 research outputs found

    Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour

    Get PDF
    Dome-forming volcanoes are among the most hazardous volcanoes on Earth. Magmatic outgassing can be hindered if the permeability of a lava dome is reduced, promoting pore pressure augmentation and explosive behaviour. Laboratory data show that acid-sulphate alteration, common to volcanoes worldwide, can reduce the permeability on the sample lengthscale by up to four orders of magnitude and is the result of pore- and microfracture-filling mineral precipitation. Calculations using these data demonstrate that intense alteration can reduce the equivalent permeability of a dome by two orders of magnitude, which we show using numerical modelling to be sufficient to increase pore pressure. The fragmentation criterion shows that the predicted pore pressure increase is capable of fragmenting the majority of dome-forming materials, thus promoting explosive volcanism. It is crucial that hydrothermal alteration, which develops over months to years, is monitored at dome-forming volcanoes and is incorporated into real-time hazard assessments

    Mid-Crustal Focused Fluid Movement: Thermal Consequences and Silica Transport

    Full text link
    Numerical models have been constructed to assess the thermal consequences and silica transport that would result if water released by regional metamorphic dehydration or cooling plutons were focused into large-scale (10 km) fracture zones. Two fracture zone model geometries have been considered, in one the fracture zone is planar, and in the other the fracture zone is radially symmetric. In both models dispersion and collection of fluids is simulated. The model results indicate that for planar or radially symmetric fracture zones, hydrothermal flow rates must approach 0.1 g/s (per m crack length) or 1 kg/s, respectively, to produce significant thermal effects. Given that regional metamorphic fluid fluxes are probably < 10−9 kg/m2−s, generation of a thermal ano-maly by fluids released during metamorphic dehydration into a planar fracture zone requires an unrealistic degree of lateral flow (>50 km). The collection area required to produce a detectable heating effect about a radially symmetric fracture zone is smaller (a radius of ∼ ∼ 15 km), but also implausibly large. These scales suggest tha

    The 2021 room-temperature superconductivity roadmap.

    Get PDF
    Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all

    New phyllosilicate types in a carbonaceous chondrite matrix [Letter]

    No full text
    CARBONACEOUS chondrites provide valuable information as they are the least altered examples of early Solar System material1. The matrix constitutes a major proportion of carbonaceous chondrites. Despite many past attempts, unambiguous identification of the minerals in the matrix has not been totally successful2. This is mainly due to the extremely fine-grained nature of the matrix phases. Recently, progress in the characterisation of these phases has been made by electron diffraction studies3,4. We present here the direct observation, by high resolution imaging, of phases in carbonaceous chondrite matrices. We used ion-thinned sections from the Murchison C2(M) meteorite for transmission electron microscopy. The Murchison matrix contains both ordered and disordered inter-growths of serpentine-like and brucite-like layers. Such mixed-layer structures are new types of layer silicates. © 1979 Nature Publishing Group

    Effect of Alteration Zones on Water Quality: A Case Study from Biga Peninsula, Turkey

    No full text
    Widespread and intense zones of silicified, propylitic, and argillic alteration can be found in the Çan volcanics of Biga Peninsula, northwest Turkey. Most of the springs in the study area surface out from the boundary between fractured aquifer (silicified zone) and impervious boundary (argillic zone). This study focuses on two such springs in KirazlI area (KirazlI and Balaban springs) with a distinct quality pattern. Accordingly, field parameters (temperature, pH, and electrical conductivity), major anion and cation (sodium, potassium, calcium, magnesium, chloride, bicarbonate, and sulfate), heavy metals (aluminum, arsenic, barium, chromium, cobalt, cupper, iron, lithium, manganese, nickel, lead, and zinc), and isotopes (oxygen-18, deuterium, and tritium) were determined in water samples taken from these springs during 2005 through 2007. The chemical analyses showed that aluminum concentrations were found to be two orders of magnitude greater in KirazlI waters (mean value 13813.25 μg/L). The levels of this element exceeded the maximum allowable limits given in national and international standards for drinking-water quality. In addition, Balaban and KirazlI springs are >55 years old according to their tritium levels; KirazlI spring is older than Balaban spring. KirazlI spring is also more enriched than Balaban spring based in oxygen-18 and deuterium values. Furthermore, KirazlI spring water has been in contact with altered rocks longer than Balaban spring water, according to its relatively high chloride and electrical conductivity values.TÜBİTA
    corecore