79 research outputs found

    FLASH Knockdown Sensitizes Cells To Fas-Mediated Apoptosis via Down-Regulation of the Anti-Apoptotic Proteins, MCL-1 and Cflip Short

    Get PDF
    FLASH (FLICE-associated huge protein or CASP8AP2) is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis

    Relationship between body image disturbance and incidence of depression: the SUN prospective cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body image disturbance is an increasing problem in Western societies and is associated with a number of mental health outcomes including anorexia, bulimia, body dysmorphia, and depression. The aim of this study was to assess the association between body image disturbance and the incidence of depression.</p> <p>Methods</p> <p>This study included 10,286 participants from a dynamic prospective cohort of Spanish university graduates, who were followed-up for a median period of 4.2 years (Seguimiento Universidad de Navarra – the SUN study). The key characteristic of the study is the permanently open recruitment that started in 1999. The baseline questionnaire included information about body mass index (BMI) and the nine figure schemes that were used to assess body size perception. These variables were grouped according to recommended classifications and the difference between BMI and body size perception was considered as a proxy of body image disturbance. A subject was classified as an incident case of depression if he/she was initially free of depression and reported a physician-made diagnosis of depression and/or the use of antidepressant medication in at least one of the follow-up questionnaires. The association between body image disturbance and the incidence of depression was estimated by calculating the multivariable adjusted Odds Ratio (OR) and its 95% Confidence Interval (95% CI), using logistic regression models.</p> <p>Results</p> <p>The cumulative incidence of depression during follow-up in the cohort was 4.8%. Men who underestimated their body size had a high percentage of overweight and obesity (50.1% and 12.6%, respectively), whereas women who overestimated their body size had a high percentage of underweight (87.6%). The underestimation exhibited a negative association with the incidence of depression among women (OR: 0.72, 95% CI: 0.54 – 0.95), but this effect disappeared after adjusting for possible confounding variables. The proportion of participants who correctly perceived their body size was high (53.3%) and gross misperception was seldom found, with most cases selecting only one silhouette below (42.7%) or above (2.6%) their actual BMI.</p> <p>Conclusion</p> <p>We found no association between body image disturbance and subsequent depression in a cohort of university graduates in Spain.</p

    Global Gene Expression Profiling Of Human Pleural Mesotheliomas: Identification of Matrix Metalloproteinase 14 (MMP-14) as Potential Tumour Target

    Get PDF
    BACKGROUND:The goal of our study was to molecularly dissect mesothelioma tumour pathways by mean of microarray technologies in order to identify new tumour biomarkers that could be used as early diagnostic markers and possibly as specific molecular therapeutic targets. METHODOLOGY:We performed Affymetrix HGU133A plus 2.0 microarray analysis, containing probes for about 39,000 human transcripts, comparing 9 human pleural mesotheliomas with 4 normal pleural specimens. Stringent statistical feature selection detected a set of differentially expressed genes that have been further evaluated to identify potential biomarkers to be used in early diagnostics. Selected genes were confirmed by RT-PCR. As reported by other mesothelioma profiling studies, most of genes are involved in G2/M transition. Our list contains several genes previously described as prognostic classifier. Furthermore, we found novel genes, never associated before to mesotheliom that could be involved in tumour progression. Notable is the identification of MMP-14, a member of matrix metalloproteinase family. In a cohort of 70 mesothelioma patients, we found by a multivariate Cox regression analysis, that the only parameter influencing overall survival was expression of MMP14. The calculated relative risk of death in MM patients with low MMP14 expression was significantly lower than patients with high MMp14 expression (P = 0.002). CONCLUSIONS:Based on the results provided, this molecule could be viewed as a new and effective therapeutic target to test for the cure of mesothelioma

    Development of scalable and versatile nanomaterial libraries for nanosafety studies: polyvinylpyrrolidone (PVP) capped metal oxide nanoparticles

    Get PDF
    The potential long-term environmental impact of manufactured nanomaterials (NMs) remains poorly understood, and the need to better predict NM fate and transformations and chronic effects is particularly urgent. Compared to their bulk counterparts, manufactured NMs can have distinct physical and chemical characteristics, which influence their behaviour, stability and toxicity. It is therefore essential to develop standard and reference NM libraries for environmental nanoscience and nano(eco)toxicology, and to facilitate a move towards computational prediction of NM fate, through quantitative structure–activity relationships for example. The aim of this work was to develop and fully characterise one such library, which included comparable NMs with a range of core chemistries, but the same capping agent and size range, for use in future studies to test the hypothesis that the core chemistry is a primary factor in controlling toxicity. The library contained the following NMs: 10k, 40k and 360k PVP capped ceria, zinc oxide and copper oxide (9 NMs in total). The work presented here upholds the underpinning hypothesis that the mechanism of NM formation is the same in all cases, suggesting that the protocol is very robust and has the potential to generate a wide range of comparable metal oxide NMs and potentially expand the library further with doped metal oxide and metal NMs. Characterisation by means of DLS (both size and zeta measurements), UV/Vis, XPS, FT-IR, TEM, STEM, EDX and EELS confirms that the tested synthesis protocol can easily and successfully be used to create stable PVP capped metal oxide NMs of reproducible sizes

    Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition

    Get PDF
    Induction of epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSCs) can occur as the result of embryonic pathway signaling. Activation of Hedgehog (Hh), Wnt, Notch, or transforming growth factor-β leads to the upregulation of a group of transcriptional factors that drive EMT. This process leads to the transformation of adhesive, non-mobile, epithelial-like tumor cells into cells with a mobile, invasive phenotype. CSCs and the EMT process are currently being investigated for the role they play in driving metastatic tumor formation in breast cancer. Both are very closely associated with embryonic signaling pathways that stimulate self-renewal properties of CSCs and EMT-inducing transcription factors. Understanding these mechanisms and embryonic signaling pathways may lead to new opportunities for developing therapeutic agents to help prevent metastasis in breast cancer. In this review, we examine embryonic signaling pathways, CSCs, and factors affecting EMT

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore