394 research outputs found

    The increase of the functional entropy of the human brain with age

    Get PDF
    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy

    Killer immunoglobulin-like Receptors (KIR) haplogroups A and B track with Natural Killer Cells and Cytokine Profile in Aged Subjects: Observations from Octo/Nonagenarians in the Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST)

    Get PDF
    BACKGROUND: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well. RESULTS: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 ((high or low)) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-β (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99–1.09; p=0.002). CONCLUSION: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Detailed Sub-study Analysis of the SECRAB Trial: Quality of Life, Cosmesis and Chemotherapy Dose Intensity.

    Get PDF
    AIMS: SECRAB was a prospective, open-label, multicentre, randomised phase III trial comparing synchronous to sequential chemoradiotherapy (CRT). Conducted in 48 UK centres, it recruited 2297 patients (1150 synchronous and 1146 sequential) between 2 July 1998 and 25 March 2004. SECRAB reported a positive therapeutic benefit of using adjuvant synchronous CRT in the management of breast cancer; 10-year local recurrence rates reduced from 7.1% to 4.6% (P = 0.012). The greatest benefit was seen in patients treated with anthracycline-cyclophosphamide, methotrexate, 5-fluorouracil (CMF) rather than CMF. The aim of its sub-studies reported here was to assess whether quality of life (QoL), cosmesis or chemotherapy dose intensity differed between the two CRT regimens. MATERIALS AND METHODS: The QoL sub-study used EORTC QLQ-C30, EORTC QLQ-BR23 and the Women's Health Questionnaire. Cosmesis was assessed: (i) by the treating clinician, (ii) by a validated independent consensus scoring method and (iii) from the patients' perspective by analysing four cosmesis-related QoL questions within the QLQ-BR23. Chemotherapy doses were captured from pharmacy records. The sub-studies were not formally powered; rather, the aim was that at least 300 patients (150 in each arm) were recruited and differences in QoL, cosmesis and dose intensity of chemotherapy assessed. The analysis, therefore, is exploratory in nature. RESULTS: No differences were observed in the change from baseline in QoL between the two arms assessed up to 2 years post-surgery (Global Health Status: -0.05; 95% confidence interval -2.16, 2.06; P = 0.963). No differences in cosmesis were observed (via independent and patient assessment) up to 5 years post-surgery. The percentage of patients receiving the optimal course-delivered dose intensity (≥85%) was not significantly different between the arms (synchronous 88% versus sequential 90%; P = 0.503). CONCLUSIONS: Synchronous CRT is tolerable, deliverable and significantly more effective than sequential, with no serious disadvantages identified when assessing 2-year QoL or 5-year cosmetic differences

    Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene

    Get PDF
    Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions, when embryonic cells exit the pluripotent state

    Prevalence of adult ADHD in an all-female prison unit.

    Get PDF
    There is increasing evidence suggesting a link between ADHD and criminality, including a strong association between ADHD symptoms and the likelihood of being on probation or in prison. Most studies investigating the prevalence of ADHD in prison populations have focused on adult male offenders. In the current study, 69 female prisoners were screened for both childhood and adult ADHD symptoms using the Barkley Adult ADHD Rating Scale-IV. The results indicate that 41 % of the prisoners met the diagnostic criteria for ADHD in childhood and continued to meet criteria for ADHD as adults. More importantly, young female prisoners (aged 18-25) were significantly more likely to report symptoms of ADHD than older prisoners. Prisoners who reported symptoms of ADHD also reported high levels of impairment associated with these symptoms. A better understanding of the prevalence of ADHD in female prison units can highlight specific areas for intervention during rehabilitation, as well as the management of serious incidents within prison

    Fermi Large Area Telescope observations of PSR J1836+5925

    Full text link
    The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1×1034\times10^{34} erg s−1^{-1}, and a large off-peak emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the off-peak emission indicate it is likely magnetospheric. Analysis of recent XMM observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa

    European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia

    Get PDF
    The therapeutic landscape of chronic myeloid leukemia (CML) has profoundly changed over the past 7 years. Most patients with chronic phase (CP) now have a normal life expectancy. Another goal is achieving a stable deep molecular response (DMR) and discontinuing medication for treatment-free remission (TFR). The European LeukemiaNet convened an expert panel to critically evaluate and update the evidence to achieve these goals since its previous recommendations. First-line treatment is a tyrosine kinase inhibitor (TKI; imatinib brand or generic, dasatinib, nilotinib, and bosutinib are available first-line). Generic imatinib is the cost-effective initial treatment in CP. Various contraindications and side-effects of all TKIs should be considered. Patient risk status at diagnosis should be assessed with the new EUTOS long-term survival (ELTS)-score. Monitoring of response should be done by quantitative polymerase chain reaction whenever possible. A change of treatment is recommended when intolerance cannot be ameliorated or when molecular milestones are not reached. Greater than 10% BCR-ABL1 at 3 months indicates treatment failure when confirmed. Allogeneic transplantation continues to be a therapeutic option particularly for advanced phase CML. TKI treatment should be withheld during pregnancy. Treatment discontinuation may be considered in patients with durable DMR with the goal of achieving TFR

    Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment

    Get PDF
    Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river’s upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records
    • …
    corecore