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Killer Immunoglobulin-like Receptors (KIR)
haplogroups A and B track with Natural Killer
Cells and Cytokine Profile in Aged Subjects:
Observations from Octo/Nonagenarians in the
Belfast Elderly Longitudinal Free-living Aging
STudy (BELFAST)
Irene Maeve Rea1*, Lynn D Maxwell2, Susan E McNerlan3, H Denis Alexander4, Martin D Curran5,
Derek Middleton6 and Owen A Ross7

Abstract

Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected,
damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and
contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR
haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic
response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described
increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/
nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the
increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living
Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.

Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype
with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for
KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers
and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B
haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers
were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence
limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-β (active), a cytokine with an anti-inflammatory role, (OR
1.14, confidence limits CI 0.99–1.09; p=0.002).
(Continued on next page)
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Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK
cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding
for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers.
While the findings in this study should be considered exploratory they may serve to stimulate debate about the
immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.

Keywords: Ageing, BELFAST octo/nonagenarians, KIR A and B haplotypes, Cytokines, IL-6, IL-12, IL-12p40, IL-10,
Active TGF-β, sIL-2R, TNF-α

Background
Natural Killer cell populations, their KIR receptor com-
plexes and associated cytokine profiles which both gen-
erate and drive their responsiveness, are highly effective
collaborators in patrolling, controlling and protecting
our immune landscape thorough out life. Their roles
and interactions are interdependent and their profiles
are of interest since they are likely to be important in
maintaining immune integrity in people who live suc-
cessfully into their 90s and fit the criteria of the Perl ‘es-
caper’ model of successful ageing [1].
NK cells bridge between the innate and adaptive im-

mune responses. They are not homogeneous and subsets
can be identified in various ways; NK cells have no T-
cell receptor CD3, but are usually positive for CD16,
CD56 and frequently CD57(HNK-1). CD56 intensity of
expression (dim or bright) on NK cells also determines
functional differences in cytotoxicity and cytokine pro-
duction [2,3], with CD56bright NK cells being described
as the “cytokine responsive” NK cell subset which does
not require “licensing” by host MHC-I molecules and
which express low levels of perforin [4]. CD8 antigen is
present on 30-40% of NK cells [5,6] and identifies an-
other group of cytotoxic cells which may also co-exist
with CD57 [7]. CD8+(high)CD57+ cells demonstrate high
cytotoxic potential associated with perforin, granzyme and
adhesion molecule expression, compared to the CD8+(low)
CD57 subset [8-11]. In healthy people, CD57 antigen is
expressed by a minority of CD8+T lymphocytes but in-
creased numbers of CD8+ CD57+ cells are found associ-
ated with chronic inflammation, cancer status and with
increased age [12]. The level of expression of CD8 on
NK subsets allows separation of the NK and cytolytic
T-lymphocyte (CTL) components of the CD57+ subset.
NK cells and associated subsets express a combination

of receptors which provide them with a broad capability
for eliminating virus- or tumour- damaged cells. The
Killer Inhibitory Receptors (KIR) NK genes are grouped
in 15–17 genes (dependent on nomenclature) and map
to chromosome 19q13.4 in a discrete area of 150kb
within the leucocyte receptor complex. They have been
classified into 4 major groups KIR2DS, 3DS, 2DL, 3DL
on the basis of the number of extracellular domains

(2 or 3) and whether they have long (L) usually inhibi-
tory or short (S) usually activatory, intracellular cytoplas-
mic receptor-linking signalling tails. KIRs act by binding
to HLA-ligands and provide NK cells with specialised
killer functions [13-15] mediated through activating and
inhibiting signals [16]. NK cells do not destroy cells which ex-
press normal levels of surface MHC class-I because inhibitory
signals dominate, whereas cells whose surface MHC Class-I
molecules are damaged by viruses or tumours are primed for
destruction through activator KIR signals [17]. The absence
of a single MHC-I allele, common in cancer cells, sensitizes
the cell to NK cell cytotoxicity [18,19]. This role is exploited
in medical oncology and bone marrow transplantation where
NK cells kill host/donor lympho-haemopoietic cells which by
expressing different HLA-Class I molecule/s, mismatch and
trigger NK inhibitory receptors [20].
At the population level, KIR genes can be separated

into two major haplotypes-A and B. Both haplotypes
have 3 common conserved framework genes - KIR3DL3,
KIR3DP1 (P refers to pseudogene), and KIR3DL2 that
are separated by a variable number and type of KIR
genes depending on A or B haplotype [21]. The simpler
group-A KIR haplotype is generally non variable and
comprises a fixed gene content of inhibitory genes-KIR
2DL1, 2DL3 and 3DL1 with 2DS4 the single activating
gene. Group-B KIR haplotype contains a variable gene
combination but tends to encode more activating KIRs
[22] and normally does not include 2DS4 [23]. The
framework genes are generally held to be KIR 3DL3,
3DP1, 3DL2 and 2DL4 with KIR2DL4 being a specific
KIR gene which has a long cytoplasmic tail but which
mediates both inhibitory and activatory signals.
The function of NK cells contributing to and maintaining

immune integrity is guided by KIRs and contributed to by
the cytokine milieu. The profile of A and B KIR genotypes
is increasingly being recognised as individual to people and
populations and driven by pathogen experience and cyto-
kines [21]. We previously described increased NK and NK-
related subsets and associated sIL-2R serum levels in octo/
nonagenarians in the BELFAST study [24,25], who show
evidence of ageing well [26].
In this observational study, we further enquired whether

KIR A and B haplotype frequencies were changed in the
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BELFAST octo/nonagenarian cohort who met the Perl ‘es-
caper’ concept [1] and whether any change might explain
the increases in the NK cell subsets and cytokine profiles
previously noted in the BELFAST aged cohort.

Results
Subject phenotype characteristics
Subjects
In the BELFAST study, 24% of octo/nonagenarians car-
ried the KIR A and 76% KIR Group B KIR haplotype
with no differences for KIR A haplogroup carriage be-
tween male or female subjects (23% v 24%; p=0.88) or
for KIR B haplogroup (77% v 76%; p=0.99). Subject char-
acteristics categorised by KIR A and B haplotypes are
described in Table 1. Mean age was 88.2[SD 5.1] years
with no difference between KIR A and KIR B haplotype
(p=0.07) carriers. There was also no significant differ-
ence for anthropometric variables-waist, body mass
index (BMI), and triceps skin fold thickness (TSF) for
comparison by KIR A and B haplotypes though weight
showed significantly higher values for KIR haplotype A
carriers (p=0.02). Using regression analysis, there was a
significant association between BMI with NK cells for
KIR B haplotype carriers separately (p=0.05) but not for
the smaller number of KIR A carriers (p=0.58). There
were no significant differences for Free Thyroxine FT4
and the biochemical variables urea, glucose and folate
between KIR A and KIR B haplogroup carriers. Serum
copper was significantly lower in KIR B haplogroup

carriers (p=0.02) but serum selenium and zinc showed
no differences between KIR groups.

NK and associated subsets categorised by KIR A and B
haplogroups for BELFAST octo/nonagenarians
Natural Killer cell CD3-CD16+CD56+, CD3-CD16+CD56+%
and KIR A and B haplotypes
The mean white cell count across the BELFAST octo/
nonagenarian group was 7.0×106 (SD2.0) with no differ-
ence between KIR A and B haplotype carriers (p=0.76).
The mean NK CD3-16+56+ cell count for BELFAST
octo/nonagenarians was 0.35 ×106 with a significantly
larger number of NK cells (p=0.003) associated with
subjects carrying the KIR A phenotype (0.48×106 [SD
0.31]) compared to B phenotype (0.33×106 [SD 0.18]). A
similar pattern was seen for percentage of NK cells with
significantly higher values (p=0.016) associated with KIR
A compared to KIR B phenotypes (23.4% [SD 9.5]) and
(18.4% [SD 9.9] respectively Table 2. Although a similar
trend for higher values was present for KIR A haplogroup
for each sex separately, there were no significant sex-
related differences across the NK cell counts (p=0.95) or
percentages (p=0.86)[data not shown].

NK-related subsets CD57+CD8+, CD57+CD8(High) and
CD57+CD8(low) cells and KIR A and B haplotypes
The counts and percentages for the NK-related CD57+
CD8(High)+ and CD57+CD8(low)+ subsets are included
for completeness with medians and ranges in Table 2.
There are no differences across KIR A and B haplogroups
by non parametric comparison, but numbers are small
and values should be considered as descriptive only.

Cytokine profiles and KIR A and B haplotype carriers
Simple regression analysis was used to assess any associ-
ation between pro-and anti-inflammatory cytokines and
NK subset numbers or percentage, which might suggest
a causal relationship. There was a weak positive associ-
ation between increasing levels of the pro-inflammatory
cytokines sIL-2R, IFN-γ, and IL-12 with increasing NK
numbers in the range of 3% and 14%. Conversely the
anti-inflammatory cytokine TGF-β (Log active) showed a
trend for a negative association with NK numbers with
no change for IL-10 (Figure 1).
The cytokine profile for the measured pro-and anti-

inflammatory cytokines, categorised for KIR A and B
haplotype carriage is shown in Table 3. Medians, ranges
and p values for KIR A and B haplogroup comparisons
by non parametric Mann Whitney-U (mwu) analysis,
show suggestive p values for IL-12 and TGF-β group
members, but numbers are small and results should be
considered as exploratory rather than definitive. Fold dif-
ferences also estimated in Table 3, show a consistent
trend for KIR B haplotype carriers to show higher

Table 1 Phenotypic characteristics of Octo/Nonagenarian
subjects from the Belfast Elderly Longitudinal Free-Living
Ageing STudy (BELFAST) categorised by KIR A and KIR B
Haplotypes with comparisions by Student’s t-test or
Mann Whitney U test

Variable KIR A KIR B t-test or mwuω

Age yrs 87.1±6.0(21) 89.3±4.1(56) 0.07

Sex 8M/13F 17M/39F 0.59

Weight kg 66.1±13.6(20) 58.6±11.4(53) 0.02*

Waist cm 90.4±15.8(18) 86.2±13.4(53) 0.28

BMI kg/m2 24.5±4.3(18) 23.5±4.0(53) 0.40

TSF mm 15.4±7.1(17) 12.8±6.3(51) 0.16

FT4 ug/dl 15.2±6.2(19) 15.6±3.6(52) 0.69

Urea umol/l 8.8[7–11.2](7) 7.7[4-12](15) 0.38ω

Glucose umol/l 5.4[3.7–7.3] (7) 5.7[4.2–8.9](15) 0.72ω

Folate ug/l 4.3[1.2–6.2](7)] 3.8[2.1–9.1](13) 0.63ω

Selenium umol/l 0.81±0.18(19) 0.80±0.28(51) 0.83

Zinc umol/l 12.8±1.9(20) 12.4±1.9(55) 0.43

Copper umol/l 20.2±2.6(20) 18.4±3.1(55) 0.02*

BMI body mass index, TSF triceps skin fold thickness, FT4 Free thyroxine index,.
Mean ±Standard Deviation, Subject nos (), Students t-test t-test, *p<0.05
is significant.
Median and range, Subject nos (), Mann Whitney-U mwu ω.
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median values for the varying cytokines by increases of
between 1.2-4.0 fold.
Percentile plots, for comparisons for KIR haplotype A

v B percentiles for several cytokines, show a similar pat-
tern with higher KIR B versus KIR A serum values for
IL-12p40, similar values for TGF-α and lower values for
TGF-β (Log active) (Figure 2).
Logistic regression was used to further explore whether

carriage of the KIR A or KIR B haplotype by BELFAST
octo/nonagenarians could predict serum cytokine level
since logistic regression can compute using reduced sub-
ject numbers and does not depend on the normality or
linearity of relationships. For IL-12, KIR B carriers were
predicted to be likely to have higher cytokine levels com-
pared to KIR A carriers by about 3% (OR 1.03, confidence
limits CI 0.99–1.09; p=0.027) and TGF-β (active), a cyto-
kine with an anti-inflammatory role, to have a 14% higher
levels for KIR B compared to KIR A carriers (OR 1.14,
confidence limits CI 0.99–1.09; p=0.002).

Discussion
In this research we have analysed some of the relation-
ships between NK cells and NK-related subsets, KIR A
and B haplogroups and cytokines as they appear in sub-
jects from the BELFAST study, who have evidence of be-
ing good quality survivors [26]. Here we demonstrate
that KIR A haplotype carriers have significantly in-
creased numbers and percentage of NK cells as a per-
centage of total lymphocyte count compared to KIR B
haplotype carriers in BELFAST octo/nonagenarians. A
similar non-significant trend emerged for male and fe-
male subjects. This means that KIR A haplotype octo/
nonagenarians demonstrate a 60% higher NK cell num-
bers compared to B haplotype carriers, but with a similar
width of distribution. Previously we had shown that NK
cell numbers negatively associate with BMI in BELFAST

octo/nonagenarians [27], in keeping with the original
findings of Mariani et al. [28], and the more recent work
of Lutz & Quinn [29]. The present analysis continues to
demonstrate a negative association between BMI and
NK cell numbers for this study cohort of BELFAST
octo/nonagenarians irrespective of KIR haplogroup and
also for KIR B haplotype carriers alone, though not for
the smaller number of KIR A haplogroup carriers, prob-
ably related to lower statistical power. As suggested pre-
viously the apparent negative association between BMI
and NK cell numbers may link through body fat percent-
age to BMI and physical exercise.
It is important to ask whether the increased NK and

NK-associated subsets found in the context of appar-
ently well elderly BELFAST 90 year olds represent evi-
dence of robust good health and immune surveillance or
are a response to chronic unrecognised illness. In sup-
port of enhanced immune surveillance, clinical and ex-
perimental evidence from animals demonstrated that
increased NK number and activity links with improved
immunity [30]. In man, while there is less accumulated
evidence relating to NK cell numbers, an important
11-year follow-up epidemiologic survey showed an as-
sociation between low NK cell activity and increased
cancer risk [31] and clarified how important NK cell
activity was in reducing tumour risk in adults [32].
There is also ongoing evidence of how effective an in-
creased NK cell compartment is in the treatment of re-
lapsed leukaemia [33]. Here the adoptive transfer of
NK cells helps control the tumour burden. This has
prompted interest in the development of innovative
cancer therapies that are based on manipulating NK
and NK-related subsets towards the treatment of solid
tumour malignancies [34,35]. Conversely low or absent
NK cells are associated with overwhelming infection
particularly from viruses [36,37].

Table 2 Numbers and percentages of NK and NK-related subsets categorised by KIR A and B Haplotypes for Octo/
Nonagenarians from the Belfast Elderly Longitudinal Free-Living Ageing STudy (BELFAST) with comparisons by
Students t-test or Mann–Whitney U

KIR A KIR B t-test/mwu ω

Wcc x106 6.9 ±1.6(19) 7.1±2.5(54) 0.76

NK CD3-16+56+ct 0.48±0.31(19) 0.33±0.18(46) 0.003*

NK CD3-16+56+% 23.4±9.5(21) 18.4±9.9(48) 0.016*

CD57+CD8+ct 0.24[0.7–1.6](7) 0.30[0.3–0.8](22) 0.58ω

CD57+CD8+% 13[5–25](7) 18[3–45](22) 0.28ω

CD57+CD8(high)+ct 0.13[0.03–0.17](7) 0.16[0.01–0.53](19) 0.58ω

CD57+ CD8(high)+% 5.0[2–6](7) 8.0[1–21](19) 0.54ω

CD57+ CD8(low)+ct 0.16[0.03–0.25](7) 0.17[0.09–0.19](19) 0.58ω

CD57+ CD8(low)+% 6.0[8–15](7) 11.0[1–40](19) 0.37ω

Wcc white cell count.
Mean ± Standard Deviation, Subject nos (), Students t-test t-test, *p<0.05 is significant.
Median and range, Subject nos (), Mann Whitney-U mwu ω.

Rea et al. Immunity & Ageing 2013, 10:35 Page 4 of 12
http://www.immunityageing.com/content/10/1/35



Increases in NK and NK-associated cells as noted in BEL-
FAST octo/nonagenarians, have previously been reported
in association with chronic infection or unrecognised ill-
ness [5,14,15]. Wikby, Pawelec and others in the Swedish
NONA study have shown evidence linking long-lasting T
CD8 cell clonopathies, with carriage of cytomegalovirus
(CMV) infection and higher mortality [38-41] and this has
been replicated more recently for carriers with high CMV
seropositivity [42]. Increased mortality is associated with
other chronic viraemias [43] and a recent paper associates
all cause and cardiovascular mortality with levels of CMV
seropositivity [44]. Pawelec and other researchers also
reported that an inverted CD4/CD8 ratio was associated

with chronic T cell clonopathies and poor outcome [38,40],
though others including the BELFAST study authors [45]
have found this to be either reversible or a non-consistent
outcome in those followed up to the age of 100 years [39].
Viruses such as CMV or Epstein-Barr Virus (EBV), which
have developed a largely commensal relationship with
humans, block NK KIR detecting molecules by interfering
with MHC class I expression so that their presence remains
undetected and unchallenged [46,47], and many have
adapted this strategy to perfection. Similarly down-
regulation of MHC class I expression is a frequently ob-
served phenomenon accompanying tumorogenesis [48].
Although a successful escape from adaptive immunity is

Figure 1 Regression Scatterplots and Regression lines for Serum Cytokines sIL-2R U/ml and TGF-β pg/ml with Natural Killer cells x106

(NK) for Octo/Nonagenarians from the Belfast Elderly Longitudinal Free-Living Ageing STudy (BELFAST) with associated p values.
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possible, there is reason to believe that most evasive
manoeuvers are counteracted early by NK cells [49]. If in-
creased NK and NK-associated cells are related to chronic
viraemia such as cytomegalovirus, it raises interesting
questions about whether there could be therapeutic op-
portunities for improving health in older age groups [50].
We also examined the KIR haplotype percentages to

look for the possibility of pleiotropic KIR effects and evi-
dence for KIR gene frequency shift occurring in BEL-
FAST subjects in association with their advanced quality
ageing. In BELFAST octo/nonagenarians the KIR A
genotype (AA) was present in 24% of elderly subjects
compared with 76% carriage for KIR B genotype (AB
+BB), with no male/ female predominance and these
percentages are largely similar to those found in a youn-
ger cohort of geographically matched subjects [51,52].
This suggests that there has been relatively little reactive,
pathogen-driven and age-related population immuno-
logical shift towards the more polymorphic and poly-
genic KIR B haplotype and visible KIR B frequency
change. The distribution of A and B haplotype varies
widely between distinct ethnic groups. The A and B
haplotype frequencies are relatively constant in Cauca-
sian populations [16,53]. However, across the world
there is a spectrum of KIR A and B alleles; the A haplo-
type dominates in Korean, Japanese and Han Chinese
populations with a frequency of approximately 75%
[54,55] as compared to the Australian Aboriginal popu-
lation where KIR A haplotype is around 13% with a shift
to higher frequencies of KIR B haplotypes [23]. These
differences may reflect both founder effects and pathogen-
driven selection and seem likely to account for some of
the world-wide variation in disease susceptibility. The

differing global KIR A and B haplogroup frequencies sug-
gests that the KIR B haplotype has been subject to more
rapid diversification as a result of pathogen-mediated se-
lection for KIR B genes which are greater in number and
more polymorphic compared to the more limited gene set
carried within the KIR A haplotype [17,56]. This concept
would therefore suggest that BELFAST octo/nonagenar-
ians do not or have not lived in a pathogen-challenged en-
vironment since B KIR B gene frequency does not
demonstrate any major age-related significant shifts within
the local population [57,58].
In the BELFAST octo/nonagenarians the most fre-

quent KIR gene frequencies are KIR2DL1 (95%), KIR3DL1
(94%) and KIR2DL2 (88%). All these inhibitory KIRs be-
long to Haplogroup A and link with HLA Class I antigens
in ligand specificity; KIR2DL1-HLA-C2; KIR3DL1-
HLA-C1; KIR2DL2 -HLA-C1. The only activating gene
in haplogroup A is KIR2DS4 which is also almost uni-
versally present in the BELFAST aged group (95%) and
like the inhibitory KIRs, its ligand is within HLA-C. It was
of interest to consider the KIR A and B haplogroups for
the BELFAST octo/nonagenarians who have lived success-
fully into their 90s, since there is increasing evidence that
co-associates of poor quality ageing such as auto-immune
and chronic inflammatory disease, track with certain
HLA-KIR haplogroup combinations [59,60]. The KIR A
gene complex containing mostly inhibitory KIR genes
tends to be associated with a lower risk of autoimmune
diseases but shows higher risk of viral infections
compared to KIR B haplotypes [60,61]. By example,
KIR2DS1 and/or KIR2DS2 in the absence of HLA-C2
and HLA-C1 respectively, are associated with psori-
atic arthritis, because of decreased potential for an

Table 3 Pro- and anti-inflammatory cytokines categorised by KIR A and B haplogroups for Octo/Nonagenarians from
the Belfast Elderly Longitudinal Free-Living Ageing STudy (BELFAST) with comparisons by Mann–Whitney U and Fold
difference between KIR A and B cytokine levels

Cytokine KIR A KIR B mw-uω Fold diff (KIR A v KIR B)

sIL-2R 640[500–770](3) 865[540–1600](16) 0.09ω 1.35

IFN-γ 1.5[1.1–3.9](6) 1.8[0.7–14.4](14) 0.51ω 1.2

TNF-a 25[16–43](12) 26[8–56](34) 0.96ω 1.0

sIL-6R 47.6[24–55](5) 52.8[25–104](16) 0.26ω 1.11

IL-6 6[5–40](12) 9[1–36](34) 0.69ω 1.5

IL-10 1.0[0–6.5](5) 2.0[0–4](16) 0.28ω 2.0

IL-12 97[69–122](6) 285[89–539](14) 0.003*ω 2.9

IL-12p70 8.2[4–13](6) 5.4[3–87](14) 0.17ω 0.65

IL-12p40 104[16-160](6) 280[13-430](14) 0.002*ω 2.7

12p40/p70 10.2[6.2–22.5](6) 49.4[5–79](14) 0.01*ω 4.8

TGF-β 33.7[0–50](10) 32.5[17.3–52](34) 0.52ω 0.96

1/logTGF-β 0.83[0.6–1.0](10) 0.70[0.33–0.94](34) 0.02*ω 0.84

TGF-β(active) 15.6[0–50](10) 26.9[11–1000](33) 0.009*ω 1.7

Median, range [], subject no (), Mann Whitney-U test, mwu, ω, *p<0.05 is significant.
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associated inhibitory phenotype [62]. Conversely those
homozygous for HLA-C2 lack ligand for KIR2DL1 and
are associated with KIR2DS2 and diabetes [63]. Others
have suggested associations for rheumatoid arthritis which
have not always been replicated in different population
groups [64-66]. Association with auto-immune disease
may relate to the unknown character of the KIR B-ligand
interactions, the controls and modulators of KIR-B activa-
tion activity and the ongoing effects on NK and NK-
related cells. Similar frequencies of inhibitory type KIR A
haplogroup as found for BELFAST octo/nonagenarians
and for younger age groups seemingly support the con-
cept of a relatively light burden of inflammation-related
chronic age-related disease and this is also supported by
BELFAST octo/nonagenarians phenotypic characteristics
which show little evidence of diabetic or renal impairment
and fit the descriptors of the ‘Perl escaper’ [26]. In early
work on HLA-antigens in BELFAST nonagenarians, we
reported an excess of the HLA-A1-B8-DR3 haplogroup

(HLA*0100:Cw*0701:B*0801:DQA1) which associated with
longevity in female BELFAST nonagenarians, and which
we argued may relate to an activated immune system
primed to manage effective infection and tumour surveil-
lance but also contributing to female autoimmunity
risk, if appropriately triggered [67]. Interestingly HLA-
Cw7 homozygosity has been noted to affect the size of
a subset of CD158+ NK cells [68] and Cw7 is consid-
ered to associate with the KIR2DL2 gene within the
ligand HLA-C1. Although any associations are likely to
be complex, we noted that this KIR2DL2 gene has a
somewhat increased frequency in BELFAST nonage-
narians (56%) compared younger local groups (49%)
[51]. More recently an association has been described
between the KIR2DS5 gene and protection from some
age-related human diseases [69]. This finding is of
interest in the context of good quality ageing and longevity,
since this KIR gene shows a non-significant trend for higher
frequencies for all BELFAST nonagenarians compared to

Figure 2 Percentile plots for Cytokines sIL-2R U/ml, TNF-α pg/ml, IL-12p40 pg/ml and log active TGF-β pg/ml for Octo/Nonagenarians
from the Belfast Elderly Longitudinal Free-Living Ageing STudy (BELFAST) grouped by Killer Immunoglobulin Receptor Haplogroups A
and B (KIR A and KIR B).
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younger groups (34% v 28%) and also for female nonagen-
arian compared to younger female subjects (38% v 27%),
though these findings need replication in bigger studies.
Cytokines are produced by, and drive the NK and NK-

related subsets in their cytotoxic stimulatory and inhibi-
tory activities. IL-2 was the original cytokine first noted
to accentuate NK cell activity [70] and we have previ-
ously shown an association between NK cell and related
NK subsets and serum sIL-2R levels [24]. Like its sister
pro-inflammatory cytokine IL-2, IL-12 and its heterodimer
IL-12p40 associate with NK cells [71] which could be con-
sistent with the original findings of their supportive role as
factors promoting natural killer (NK) and cytotoxic T
lymphocyte (CTL) activities [72,73]. The synergistic effect
of combined IL-2 and IL-12 in promoting cytotoxic activity
of NK cells through IFN-γ production, has been translated
into a clinical therapeutic role for IL-12 in augmenting NK
cytotoxity in cancer [74,75]. If replicated with larger study
numbers, increased serum IL-12 levels associated with KIR
B haplotype carriers in the current study, might suggest a
potentially translatable outcome for KIR B subjects facing
cancer-adjuvant therapy [76]. TGF-β, considered an im-
munosuppressive cytokine, reduces numbers of NK CD56
(dim) cells [77,78], inhibits production of IFN-γ and TNF-α
in vitro [79] and is now considered important in facilitating
immune evasion in a cancer microenvironment through
suppression of cytotoxic lymphocytes [80]. In the present
study, although numbers are small, BELFAST nonagenar-
ians who were KIR B haplotype carriers showed a trend for
lower values for TGF-β. Conversely, TGF-β (active) values
tended to be increased, which seems likely to be in keeping
with its release from multiple tissue sites by proteolytic
processes and offering differing roles.
Although the cytokine comparisons between KIR A

and B haplogroups for BELFAST octo/nonagenarians
must remain tentative because of small group numbers,
the present analysis tends to shows accentuated cytokine
profiles with the suggestion that KIR B haplotype car-
riers tend to produce higher amounts of the pro-
inflammatory cytokines which could serve to heighten
and prime the immune response. Normal cells are con-
sidered to express very few ligands for activating KIR re-
ceptors making it unlikely that the threshold for NK cell
activation is reached under normal circumstances. A
process of NK ‘education’ has been suggested to provide
a diverse population of NK cells with different effector
thresholds [81]. The question has therefore to be asked
as to why there appears to be an activated cytokine mi-
lieu in BELFAST octo/nonagenarians and how this inter-
acts and affects the immune effectiveness of the NK and
associated NK-related cellular compartment. In a previous
study we noted an association between NK cells and the
CD3+CD69+ subset, one of the earliest signatures of im-
mune activation [82]. In the BELFAST octo/nonagenarian

group therefore, the NK cells appear primed for action,
particularly for subjects who were KIR B haplotype car-
riers. Possible reasons for immunological up-regulation in
the context of apparent good quality ageing could relate
to early and superior cancer surveillance, response to low
grade pathogens or a ‘hormetic’ response to a range of
stressors and toxins related to imperfect gut, skin and
endothelial barriers associated with increasing age.
There are several limitations to our study. First, our

sample was screened for good health and this sample se-
lection could have biased the outcomes since those with
active disease at baseline were excluded. The ‘elite eld-
erly’ subjects, when enlisted into the Belfast Elderly Lon-
gitudinal Free-living Ageing Study (BELFAST) project,
were community-living, cognitively intact and met the
criteria of the Senieur protocol, rather than representa-
tives of an ‘all comer’ octo/nonagenarian cohort. They
were consistent with the concept of the Perl ‘escaper’ or
the 15% of elderly people who have reached the age of
90–100 with no overt signs of illness [1,26]. In addition
the differing and reduced subject numbers, materials
available and variables measured, could also have re-
duced the statistical power, particularly for male subjects
and KIR A haplogroup carriers. Subject frailty, perceived
or real vulnerability about lack of autonomy [83] are im-
portant and ongoing issues and make research in this
group of subjects challenging and contribute to incom-
plete datasets. The findings in the BELFAST study
should therefore be considered preliminary and explora-
tory and need to be replicated by other groups in other
places with increased statistical power. However re-
search studies with 90-year-olds remain scare but are
highly important as this group is the fastest growing sec-
tor of the population and the subject group about whom
we know relatively little medically, scientifically and
economically.
Natural Killer cell populations, their KIR receptor com-

plexes and associated cytokine profiles which both gener-
ate and drive their responsiveness, are highly effective
collaborators in controlling, patrolling and protecting our
immune landscape thorough out life. The intrinsic and ex-
trinsic factors that shape human NK cell diversity remain
incompletely understood. However, three factors appear
to influence the structure and function of the KIR reper-
toire; KIR gene diversity especially haplogroup B; HLA
class I -A, -B and -C ligands, and a program of sequential
receptor acquisition during NK cell development which
sets NK activation thresholds and could be related to the
cytokine milieu. In recent research we have demonstrated
that BELFAST octo/nonagenarians show maintained glo-
bal methylation [84], supporting the concept of a compe-
tent immune system and it seems likely that hypo/
hypermethylation of individual promoter genes provides
another pathway through which lifestyle, nutrition, stress
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etc. modulate and change the activation/inhibitory pat-
terns of KIR genes [85] and can fingerprint the ageing im-
mune profile.
In the present research we have attempted to dissect

out some elements of this immune landscape. We report
some of the relationships between NK cells and NK-
related subsets, KIR A and B haplogroups and cytokines
as they appear in subjects from the BELFAST study. The
findings across the 3 interacting domains should be con-
sidered exploratory but may serve to stimulate debate
and encourage replication studies to improve our under-
standing about the immune signatures of those who live
successfully into their 90s and who fit the criteria of the
Perl ‘escaper’ model of successful ageing.

Materials and methods
Subjects
Ninety three unrelated consecutively enrolled subjects
from the BELFAST study, age range 80–97 years, 70%
female and 30% male were included in the elderly study
sample. Elderly and very elderly subjects enlisted into
the Belfast Elderly Longitudinal Free-living Ageing
STudy (BELFAST) study gave written consent, were ap-
parently well, lived independently in the community,
were mentally competent [86] and met the criteria for
inclusion in immuno-gerontological studies using the
Senieur protocol [27,87]. Elderly subjects had a range of
anthropometric measurements together with blood sam-
pling carried out by a research nurse who visited at
home as previously described [88,89]. Not all subjects
provided adequate sample material for DNA separation,
NK cell phenotyping and the full range of cytokines ana-
lyses. KIR gene characterisation was available for 77 sub-
jects. All subjects gave written consent for inclusion in
the study and permission for the study was given by
Queens University Ethical Committee.

Cell phenotyping and flow cytometric analysis
Natural Killer Cell (CD3-CD56+CD16+) and CD57+
CD8+ subset analysis for elderly subjects from the BEL-
FAST study only, was carried out as previously described
[24]. Briefly, blood was collected into K3 EDTA,
processed within 3 hours of collection and cells labelled
in whole blood using the following two fluorochrome-
labelled monoclonal antibody combinations: anti-CD3-
FITC/CD16+CD56-PE and CD57-FITCE/CD8-PE (Becton
Dickinson, UK). Flow cytometric analysis was performed
on a FACScan instrument using Simulset software (BD).
Routine haematological parameters were analysed on a
Coulter STKS hemocytometer. Compensation settings and
gates were established on negative controls. CD8/CD57
subsets were defined as CD8(low)+CD57+ and CD8(high)+
CD57+ as previously described.

Cytokine and receptor analysis
Matching BELFAST serum samples collected in endotoxin-
free tubes and stored at −70°C were used for cytokine ana-
lyses. Cytokines were measured in batches from the same
ELISA kits; IL-12 [IL-12p70 and Il-12p40], IL-10, TNF-α
and TGF-β Genzyme; sIL-2R and sIL-6 Medgenix; IL-6
R&D Systems. Detection limit-6pg/ml for IL-10; 24U/ml
for sIL-2R; total IL-12 <800 pg/ml; IL-12p70 <256 pg/ml;
TGF-β, 0.75 pg/ml;TNF-α, 3 pg/mL; IL-6, 0.7 pg/mL.

KIR genotyping by polymerase chain reaction (PCR)-
sequence specific oligonucleotide probe (PCR-SSOP)
hybridization protocol
Genomic DNA was extracted from the buffy coats of
peripheral blood by the salting out method [90]. PCR
amplification was performed using appropriate primer
combinations and KIR genotypes, gene numbers and fre-
quencies were identified and enumerated for the BELFAST
subjects as previously described [51]. A KIR haplotype was
identified as a fixed gene content of 4 inhibitory genes-KIR
2DL1, 2DL3, 3DL1 with 2DS4 as the single activating gene.
Group-B KIR haplotypes were identified as containing vari-
able gene combinations encoding more activating KIRs
which did not include 2DS4. KIR AA haplogroup was
designed KIR A and AB and BB haplogroups designated
KIR B for analysis purposes.

Statistical analysis
Results and statistical analysis for this study involved the
octo/nonagenarian group from the BELFAST study catego-
rised by KIR A and B haplotypes for NK and related subsets
and pro and anti-inflammatory cytokines. For each variable,
values are expressed as mean and standard deviation (SD)
or as medians and range for non-normal distributions. Dif-
ferences in subject characteristics, NK and related subsets
and cytokine variables were categorised by KIR A or B
haplotype status and analysed by students-test or Mann–
Whitney U (mwu) as appropriate using Statview and SPSS
version 16 programmes. Smaller datasets should be con-
sidered to provide descriptive information only. Logistic
regression analysis and odds ratio (OR) was used to pre-
dict differences in KIR A and KIR B categories for those
variables significantly different or close to significance by
students t-test or mwu. P value <0.05 was used for nom-
inal significance rather than Bonferroni correction being
applied.
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