129 research outputs found

    Microfluidic impedance biosensors for monitoring a single and multiple cancer cells in anticancer drug treatments

    Get PDF
    In this work, we present a novel microfluidic impedance biosensor chip for trapping both a single and multiple cancer cells and monitoring their response to the anti-cancer drug treatment. By designing different sizes of working microelectrodes together with the V-shaped cell capture structures, a single or multiple cells are trapped on the microelectrodes surfaces. In addition, by utilizing the passive pumping method, cells can be trapped and positioned inside the microchannels without the need of using the outer micro pump or syringe. The impedance change induced by the response of cells to the anticancer drug Cisplatin treatment was successfully recorded. The proposed biosensor chip has a great potential for applications in cancer cell research, drug screening, and quantification of cancer cells from various tumor stages. The results of this study open potential research collaborations about development of cost-effective devices and lab-on-chips for early disease detection, studies of cancerous cells and their response to anti-cancer drugs to optimize cancer treatments, characterisation of mechanical properties of cells, new drug delivery mechanisms, and micro and nano manufacturing

    A Frameshift in CSF2RB Predominant Among Ashkenazi Jews Increases Risk for Crohn's Disease and Reduces Monocyte Signaling via GMCSF

    Get PDF
    BACKGROUND & AIMS: Crohn's disease (CD) has the highest prevalence in Ashkenazi Jewish populations. We sought to identify rare, CD-associated frameshift variants of high functional and statistical effects. METHODS: We performed exome-sequencing and array-based genotype analyses of 1477 Ashkenazi Jewish individuals with CD and 2614 Ashkenazi Jewish individuals without CD (controls). To validate our findings, we performed genotype analyses of an additional 1515 CD cases and 7052 controls for frameshift mutations in the colony stimulating factor 2 receptor beta common subunit gene (CSF2RB). Intestinal tissues and blood samples were collected from patients with CD; lamina propria leukocytes were isolated and expression of CSF2RB and GMCSF-responsive cells were defined by mass cytometry (CyTOF analysis). Variants of CSF2RB were transfected into HEK293 cells and expression and functions of gene products were compared. RESULTS: In the discovery cohort, we associated CD with a frameshift mutation in CSF2RB (P=8.52x10-4); the finding was validated in the replication cohort (combined P=3.42x10-6). Incubation of intestinal lamina propria leukocytes with GMCSF resulted in high levels of phosphorylation of STAT5 and lesser increases in phosphorylation of ERK and AKT. Cells co-transfected with full-length and mutant forms of CSF2RB had reduced pSTAT5 following stimulation with GMCSF, compared to cells transfected with control CSF2RB, indicating a dominant negative effect of the mutant gene. Monocytes from patients with CD who were heterozygous for the frameshift mutation (6% of CD cases analyzed) had reduced responses to GMCSF and markedly decreased activity of aldehyde dehydrogenase; activity of this enzyme has been associated with immune tolerance. CONCLUSIONS: In a genetic analysis of Ashkenazi Jewish individuals, we associated CD with a frameshift mutation in CSF2RB. Intestinal monocytes from carriers of this mutation had reduced responses to GMCSF, providing an additional mechanism for alterations to the innate immune response in individuals with CD

    Conscientiousness, Career Success, and Longevity: A Lifespan Analysis

    Get PDF
    Markers of executive functioning, such as prudent planning for the future and impulse control, are related to conscientiousness and may be central to both occupational success and health outcomes. The aim of the study was to examine relations among conscientiousness, career success, and mortality risk across a 65-year period. Using data derived from 693 male participants in the Terman Life Cycle Study, we examined associations among childhood personality, midlife objective career success, and lifelong mortality risk through 2006. Conscientiousness and career success each predicted lower mortality risk (N = 693, relative hazard (rh) = 0.82 [95% confidence interval = 0.74, 0.91] and rh = 0.80 [0.71, 0.91], respectively), with both shared and unique variance. Importantly, childhood personality moderated the success–longevity link; conscientiousness was most relevant for least successful individuals. Conscientiousness and career success predicted longevity, but not in a straightforward manner. Findings highlight the importance of lifespan processes

    Use of Mangroves by Lemurs

    Get PDF
    Despite an increasing recognition of the ecosystem services provided by mangroves, we know little about their role in maintaining terrestrial biodiversity, including primates. Madagascar’s lemurs are a top global conservation priority with 94 % of species threatened with extinction, but records of their occurrence in mangroves are scarce. I used a mixed-methods approach to collect published and unpublished observations of lemurs in mangroves: I carried out a systematic literature search, and supplemented this with a targeted information request to 1243 researchers, conservation and tourism professionals and others who may have visited mangroves in Madagascar. I found references to, or observations of, at least 23 species in five families using mangroves, representing more than 20 % of lemur species and over 50 % of species whose distributions include mangrove areas. Lemurs used mangroves for foraging, sleeping and travelling between terrestrial forest patches, and some were observed as much as 3 km from the nearest permanently dry land. However most records were anecdotal and thus tell us little about lemur ecology in this habitat. Mangroves are more widely used by lemurs than has previously been recognised, and merit greater attention from primate researchers and conservationists in Madagascar

    Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

    Get PDF
    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments

    Resveratrol Inhibits Protein Translation in Hepatic Cells

    Get PDF
    Resveratrol is a plant-derived polyphenol that extends lifespan and healthspan in model organism. Despite extensive investigation, the biological processes mediating resveratrol's effects have yet to be elucidated. Because repression of translation shares many of resveratrol's beneficial effects, we hypothesized that resveratrol was a modulator of protein synthesis. We studied the effect of the drug on the H4-II-E rat hepatoma cell line. Initial studies showed that resveratrol inhibited global protein synthesis. Given the role of the mammalian Target of Rapamycin (mTOR) in regulating protein synthesis, we examined the effect of resveratrol on mTOR signaling. Resveratrol inhibited mTOR self-phosphorylation and the phosphorylation of mTOR targets S6K1 and eIF4E-BP1. It attenuated the formation of the translation initiation complex eIF4F and increased the phosphorylation of eIF2α. The latter event, also a mechanism for translation inhibition, was not recapitulated by mTOR inhibitors. The effects on mTOR signaling were independent of effects on AMP-activated kinase or AKT. We conclude that resveratrol is an inhibitor of global protein synthesis, and that this effect is mediated through modulation of mTOR-dependent and independent signaling

    Single-mode cavities at frequencies of 172 and 178 MHz

    Get PDF
    In the report presented here the projects of two accelerating cavities with strong damping of higher modes (HOM) with special vacuum loads are presented. The designs of the cavities and loads are described. The design parameters of cavities, their spectra of higher modes and calculation results of the beam phase motion stability are given for the VEPP-2000 and NANOHANA Projects

    A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System

    Get PDF
    The global agriculture, aquaculture, fishing and forestry (AAFF) energy system is subject to three unsustainable trends: (1) the approaching biophysical limits of AAFF; (2) the role of AAFF as a driver of environmental degradation; and (3) the long-term declining energy efficiency of AAFF due to growing dependence on fossil fuels. In response, we conduct a net energy analysis for the period 1971–2017 and review existing studies to investigate the global AAFF energy system and its vulnerability to the three unsustainable trends from an energetic perspective. We estimate the global AAFF system represents 27.9% of societies energy supply in 2017, with food energy representing 20.8% of societies total energy supply. We find that the net energy-return-on-investment (net EROI) of global AAFF increased from 2.87:1 in 1971 to 4.05:1 in 2017. We suggest that rising net EROI values are being fuelled in part by ‘depleting natures accumulated energy stocks’. We also find that the net energy balance of AAFF increased by 130% in this period, with at the same time a decrease in both the proportion of rural residents and also the proportion of the total population working in AAFF—which decreased from 19.8 to 10.3%. However, this comes at the cost of growing fossil fuel dependency which increased from 43.6 to 62.2%. Given the increasing probability of near-term fossil fuel scarcity, the growing impacts of climate change and environmental degradation, and the approaching biophysical limits of global AAFF, ‘Odum’s hoax’ is likely soon to be revealed

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    corecore