100 research outputs found

    Serotonin regulates prostate growth through androgen receptor modulation

    Get PDF
    Serotonin regulates prostate growth through androgen receptor modulationAging and testosterone almost inexorably cause benign prostatic hyperplasia (BPH) in Human males. However, etiology of BPH is largely unknown. Serotonin (5-HT) is produced by neuroendocrine prostatic cells and presents in high concentration in normal prostatic transition zone, but its function in prostate physiology is unknown. Previous evidence demonstrated that neuroendocrine cells and 5-HT are decreased in BPH compared to normal prostate. Here, we show that 5-HT is a strong negative regulator of prostate growth. In vitro, 5-HT inhibits rat prostate branching through down-regulation of androgen receptor (AR). This 5-HT's inhibitory mechanism is also present in human cells of normal prostate and BPH, namely in cell lines expressing AR when treated with testosterone. In both models, 5-HT's inhibitory mechanism was replicated by specific agonists of 5-Htr1a and 5-Htr1b. Since peripheral 5-HT production is specifically regulated by tryptophan hydroxylase 1(Tph1), we showed that Tph1 knockout mice present higher prostate mass and up-regulation of AR when compared to wild-type, whereas 5-HT treatment restored the prostate weight and AR levels. As 5-HT is decreased in BPH, we present here evidence that links 5-HT depletion to BPH etiology through modulation of AR. Serotoninergic prostate pathway should be explored as a new therapeutic target for BPH.Projects NORTE-01-0246-FEDER-000012, NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) and Bolsa de Investigação GSK Inovação em Urologia 2012info:eu-repo/semantics/publishedVersio

    Tilt aftereffect following adaptation to translational Glass patterns

    Get PDF
    Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We assessed whether adaptation to stationary oriented translational GPs suppresses the activity of orientation selective detectors producing a tilt aftereffect (TAE). The results showed that adaptation to GPs produces a TAE similar to that reported in previous studies, though reduced in amplitude. This suggests the involvement of orientation selective mechanisms. We also measured the interocular transfer (IOT) of the GP-induced TAE and found an almost complete IOT, indicating the involvement of orientation selective and binocularly driven units. In additional experiments, we assessed the role of attention in TAE from GPs. The results showed that distraction during adaptation similarly modulates the TAE after adapting to both GPs and gratings. Moreover, in the case of GPs, distraction is likely to interfere with the adaptation process rather than with the spatial summation of local dipoles. We conclude that TAE from GPs possibly relies on visual processing levels in which the global orientation of GPs has been encoded by neurons that are mostly binocularly driven, orientation selective and whose adaptation-related neural activity is strongly modulated by attention

    Enhanced Visual Temporal Resolution in Autism Spectrum Disorders

    Get PDF
    Cognitive functions that rely on accurate sequencing of events, such as action planning and execution, verbal and nonverbal communication, and social interaction rely on well-tuned coding of temporal event-structure. Visual temporal event-structure coding was tested in 17 high-functioning adolescents and adults with autism spectrum disorder (ASD) and mental- and chronological-age matched typically-developing (TD) individuals using a perceptual simultaneity paradigm. Visual simultaneity thresholds were lower in individuals with ASD compared to TD individuals, suggesting that autism may be characterised by increased parsing of temporal event-structure, with a decreased capability for integration over time. Lower perceptual simultaneity thresholds in ASD were also related to increased developmental communication difficulties. These results are linked to detail-focussed and local processing bias

    Do faces capture the attention of individuals with Williams syndrome or Autism? Evidence from tracking eye movements

    Get PDF
    The neuro-developmental disorders of Williams syndrome (WS) and autism can reveal key components of social cognition. Eye‐tracking techniques were applied in two tasks exploring attention to pictures containing faces. Images were i) scrambled pictures containing faces or ii) pictures of scenes with embedded faces. Compared to individuals who were developing typically, participants with WS and autism showed atypicalities of gaze behaviour. Individuals with WS showed prolonged face gaze across tasks, relating to the typical WS social phenotype. Participants with autism exhibited reduced face gaze, linking to a lack of interest in socially relevant information. The findings are interpreted in terms of wider issues regarding socio‐cognition and attention mechanisms

    Predicting complete loss to follow-up after a health-education program: number of absences and face-to-face contact with a researcher

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research on health-education programs requires longitudinal data. Loss to follow-up can lead to imprecision and bias, and <it>complete </it>loss to follow-up is particularly damaging. If that loss is predictable, then efforts to prevent it can be focused on those program participants who are at the highest risk. We identified predictors of complete loss to follow-up in a longitudinal cohort study.</p> <p>Methods</p> <p>Data were collected over 1 year in a study of adults with chronic illnesses who were in a program to learn self-management skills. Following baseline measurements, the program had one group-discussion session each week for six weeks. Follow-up questionnaires were sent 3, 6, and 12 months after the baseline measurement. A person was classified as completely lost to follow-up if none of those three follow-up questionnaires had been returned by two months after the last one was sent.</p> <p>We tested two hypotheses: that complete loss to follow-up was directly associated with the number of absences from the program sessions, and that it was less common among people who had had face-to-face contact with one of the researchers. We also tested predictors of data loss identified previously and examined associations with specific diagnoses.</p> <p>Using the unpaired t-test, the U test, Fisher's exact test, and logistic regression, we identified good predictors of complete loss to follow-up.</p> <p>Results</p> <p>The prevalence of complete loss to follow-up was 12.2% (50/409). Complete loss to follow-up was directly related to the number of absences (odds ratio; 95% confidence interval: 1.78; 1.49-2.12), and it was inversely related to age (0.97; 0.95-0.99). Complete loss to follow-up was less common among people who had met one of the researchers (0.51; 0.28-0.95) and among those with connective tissue disease (0.29; 0.09-0.98). For the multivariate logistic model the area under the ROC curve was 0.77.</p> <p>Conclusions</p> <p>Complete loss to follow-up after this health-education program can be predicted to some extent from data that are easy to collect (age, number of absences, and diagnosis). Also, face-to-face contact with a researcher deserves further study as a way of increasing participation in follow-up, and health-education programs should include it.</p

    Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders

    Get PDF
    Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatoryinhibitory balance underlies enhanced neural responses to coherent motion in ASD

    Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows

    Get PDF
    Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed
    corecore